Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.
more »
« less
Efficient modeling of electron kinetics under influence of externally applied electric field in magnetized weakly ionized plasma
Abstract We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an arbitrary magnitude and direction of applied electric field and magnetic field . The proposed transcendental method does not require the two-term solution of the Boltzmann equation in magnetized plasma, based on which the transport parameters vary as a function of the reduced electric field , reduced electron cyclotron frequency , and angle between and vectors, whereNis the density of neutrals. Comparisons between the coefficients derived from BOLSIG+’s solution (obtained via the two-term expansion when ) and coefficients of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium (He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The new approach may be used in the modeling of magnetized plasma encountered in the context of transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in various laboratory and industrial applications of nonthermal plasmas.
more »
« less
- Award ID(s):
- 2010088
- PAR ID:
- 10430022
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Plasma Sources Science and Technology
- Volume:
- 32
- Issue:
- 7
- ISSN:
- 0963-0252
- Page Range / eLocation ID:
- Article No. 075004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently, , a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the ( ) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface of are trivial bulk bands. The absence of symmetry-protected surface state on the ( ) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR of .more » « less
-
Abstract We study the radial evolution of the inertial-range solar wind plasma turbulence and its anisotropy in the outer heliosphere. We use magnetic field (B) measurements from the Voyager 2 spacecraft for heliocentric distancesRfrom 1 to 33 au. We find that the perpendicular and trace power spectral densities (PSDs) of the magnetic field ( and ) still follow a Kolmogorov-like spectrum until 33 au. The parallel magnetic field PSD, , transits from a power-law index of −2 to −5/3 as the distance crossesR∼ 10 au. The PSD at frequencies 0.01 Hz <f< 0.2 Hz flattens atR> 20 au, gradually approaching anf−1spectrum, probably due to instrument noise. At 0.002 Hz <f< 0.1 Hz, quasi-parallel propagation dominates at 1 au <R< 7 au, with quasi-perpendicular propagation gradually emerging atR> 5 au. ForR> 7 au, oblique propagation becomes the primary mode of propagation. At smaller frequencies off< 0.01 Hz, increases with propagation angle at 1 au <R< 5 au, and in contrast decreases with propagation angle atR> 5 au due to the enhanced power level at propagation angles smaller than 20°. Such enhancement may derive from the injection of wave energy from the pickup ion source into the background turbulent cascade, and the injected wave energy is transferred across scales without leaving local enhancements in or .more » « less
-
Abstract The sensitivity of urban canopy air temperature ( ) to anthropogenic heat flux ( ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of (where represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median is around 0.01 over the CONUS. Besides the direct effect of on , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and is mostly controlled by the direct effect in summer. In winter, becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with . The spatial and temporal (both seasonal and diurnal) variability of as well as the nonlinear response of to are strongly related to the variability of , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models.more » « less
-
Abstract We investigate the effectiveness of the statistical radio frequency interference (RFI) mitigation technique spectral kurtosis ( ) in the face of simulated realistic RFI signals. estimates the kurtosis of a collection ofMpower values in a single channel and provides a detection metric that is able to discern between human-made RFI and incoherent astronomical signals of interest. We test the ability of to flag signals with various representative modulation types, data rates, duty cycles, and carrier frequencies. We flag with various accumulation lengthsMand implement multiscale , which combines information from adjacent time-frequency bins to mitigate weaknesses in single-scale . We find that signals with significant sidelobe emission from high data rates are harder to flag, as well as signals with a 50% effective duty cycle and weak signal-to-noise ratios. Multiscale with at least one extra channel can detect both the center channel and sideband interference, flagging greater than 90% as long as the bin channel width is wider in frequency than the RFI.more » « less
An official website of the United States government
