skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large unidirectional spin Hall and Rashba−Edelstein magnetoresistance in topological insulator/magnetic insulator heterostructures
Award ID(s):
1915849 1641989
PAR ID:
10361794
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Reviews
Volume:
9
Issue:
1
ISSN:
1931-9401
Page Range / eLocation ID:
Article No. 011406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, this paper reports on NV‐based local sensing of the electrically driven insulator‐to‐metal transition (IMT) in a proximal Mott insulator. The resistive switching properties of both pristine and ion‐irradiated VO2thin film devices are studied by performing optically detected NV electron spin resonance measurements. These measurements probe thelocaltemperature and magnetic field in electrically biased VO2devices, which are in agreement with theglobaltransport measurement results. In pristine devices, the electrically driven IMT proceeds through Joule heating up to the transition temperature while in ion‐irradiated devices, the transition occurs nonthermally, well below the transition temperature. The results provide direct evidence for nonthermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials. 
    more » « less
  2. null (Ed.)