skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Search for Solar Flare Neutrinos with the KamLAND Detector
Abstract

We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of 8.4 × 107cm−2(3.0 × 109cm−2) on the electron antineutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity.

 
more » « less
Award ID(s):
2012964 2110720
PAR ID:
10361811
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
924
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 103
Size(s):
Article No. 103
Sponsoring Org:
National Science Foundation
More Like this
  1. The Askaryan Radio Array (ARA) is an ultrahigh energy (UHE, >10^17  eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In this paper, we present constraints on the diffuse flux of ultrahigh energy neutrinos between 1016 and 1021  eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013–2016) from the two deep stations (A2, A3) operating at that time. We place a 90% CL upper limit on the diffuse all flavor neutrino flux at 1018  eV of EF(E)=5.6×10^−16  cm^−2 s^−1 sr^−1. This analysis includes four times the exposure of the previous ARA result and represents approximately 1/5^th the exposure expected from operating ARA until the end of 2022. 
    more » « less
  2. ABSTRACT

    The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.

     
    more » « less
  3. Abstract

    When a star undergoes core collapse, a vast amount of energy is released in a ∼10 s long burst of neutrinos of all species. Inverse beta decay in the star’s hydrogen envelope causes an electromagnetic cascade that ultimately results in a flare of gamma rays—an “echo” of the neutrino burst—at the characteristic energy of 0.511 MeV. We study the phenomenology and detectability of this flare. Its luminosity curve is characterized by a fast, seconds-long rise and an equally fast decline, with a minute- or hour-long plateau in between. For a near-Earth star (distanceD≲ 1 kpc) the echo will be observable at near future gamma-ray telescopes with an effective area of 103cm2or larger. Its observation will inform us on the envelope size and composition. In conjunction with the direct detection of the neutrino burst, it will also give information on the neutrino emission away from the line of sight and will enable tests of neutrino propagation effects between the stellar surface and Earth.

     
    more » « less
  4. Abstract We explore the possibility to use advanced germanium (Ge) detectors as a low-energy solar neutrino observatory by means of neutrino-nucleus elastic scattering. A Ge detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a novel technology with experimental sensitivity for detecting low-energy solar neutrinos. Ge internal charge amplification (GeICA) detectors will amplify the charge carriers induced by neutrino interacting with Ge atoms through the emission of phonons. It is those phonons that will create charge carriers through the ionization of impurities to achieve an extremely low energy threshold of ∼0.01 eV. We demonstrate the phonon absorption, excitation, and ionization probability of impurities in a Ge detector with impurity levels of 3 × 10 10 cm −3 , 9 × 10 10 cm −3 , and 2 × 10 11 cm −3 . We present the sensitivity of such a Ge experiment for detecting solar neutrinos in the low-energy region. We show that, if GeICA technology becomes available, then a new opportunity arises to observe pp and 7 Be solar neutrinos. Such a novel detector with only 1 kg of high-purity Ge will give ∼10 events per year for pp neutrinos and ∼5 events per year for 7 Be neutrinos with a detection energy threshold of 0.01 eV. 
    more » « less
  5. Abstract

    We report on a search for electron antineutrinos (ν¯e) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm−2s−1(90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of8B solar neutrinos converting intoν¯e,Pνeν¯e<3.5×105(90% CL) assuming an undistortedν¯eshape. This corresponds to a solarν¯eflux of 60 cm−2s−1(90% CL) in the analysis energy range.

     
    more » « less