skip to main content


Title: The incidence of X-ray selected AGN in nearby galaxies
ABSTRACT

We present the identification and analysis of an unbiased sample of active galactic nuclei (AGN) that lie within the local galaxy population. Using the MPA-JHU catalogue (based on SDSS DR8) and 3XMM DR7 we define a parent sample of 25 949 local galaxies (z ≤ 0.33). After confirming that there was strictly no AGN light contaminating stellar mass and star-formation rate calculations, we identified 917 galaxies with central, excess X-ray emission likely originating from an AGN. We analysed their optical emission lines using the BPT diagnostic and confirmed that such techniques are more effective at reliably identifying sources as AGN in higher mass galaxies: rising from 30 per cent agreement in the lowest mass bin to 93 per cent in the highest. We then calculated the growth rates of the black holes powering these AGN in terms of their specific accretion rates (∝LX/M*). Our sample exhibits a wide range of accretion rates, with the majority accreting at rates $\le 0.5\ \mathrm{ per \, cent}$ of their Eddington luminosity. Finally, we used our sample to calculate the incidence of AGN as a function of stellar mass and redshift. After correcting for the varying sensitivity of 3XMM, we split the galaxy sample by stellar mass and redshift and investigated the AGN fraction as a function of X-ray luminosity and specific black hole accretion rate. From this we found the fraction of galaxies hosting AGN above a fixed specific accretion rate limit of 10−3.5 is constant (at $\approx 1\ \mathrm{ per \, cent}$) over stellar masses of 8 < log M*/M⊙ < 12 and increases (from $\approx 1\ \mathrm{ per \, cent}$ to 10 per cent) with redshift.

 
more » « less
NSF-PAR ID:
10361850
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4556-4572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the identification and analysis of an X-ray selected AGN sample that lie within the local (z < 0.35) galaxy population. From a parent sample of 22 079 MPA-JHU (based on SDSS DR8) galaxies, we identified 917 galaxies with central, excess X-ray emission (from 3XMM-DR7) likely originating from an AGN. We measured the host galaxies’ star formation rates and classified them as either star-forming or quiescent based on their position relative to main sequence of star formation. Only 72 per cent of the X-ray selected sample were identified as AGN using BPT selection; this technique is much less effective in quiescent hosts, only identifying 50 per cent of the X-ray AGN. We also calculated the growth rates of the black holes powering these AGN in terms of their specific accretion rate (∝ LX/M*) and found quiescent galaxies, on average, accrete at a lower rate than star-forming galaxies. Finally, we measured the sensitivity function of 3XMM so we could correct for observational bias and construct probability distributions as a function of accretion rate. AGN were found in galaxies across the full range of star formation rates ($\log _{10} \, \mathrm{SFR/M_\odot \ yr^{-1}} = -3\ \mathrm{to}\ 2$) in both star-forming and quiescent galaxies. The incidence of AGN was enhanced by a factor 2 (at a 3.5σ significance) in star-forming galaxies compared to quiescent galaxies of equivalent stellar mass and redshift, but we also found a significant population of AGN hosted by quiescent galaxies.

     
    more » « less
  2. ABSTRACT

    In this work we present a robust quantification of X-ray selected AGN in local (z ≤ 0.25) dwarf galaxies ($M_\mathrm{*} \le 3 \times 10^9 \, \mathrm{M_\odot }$). We define a parent sample of 4331 dwarf galaxies found within the footprint of both the MPA-JHU galaxy catalogue (based on SDSS DR8) and 3XMM DR7, performed a careful review of the data to remove misidentifications and produced a sample of 61 dwarf galaxies that exhibit nuclear X-ray activity indicative of an AGN. We examine the optical emission line ratios of our X-ray selected sample and find that optical AGN diagnostics fail to identify 85 per cent of the sources. We then calculated the growth rates of the black holes powering our AGN in terms of their specific accretion rates (∝ LX/M*, an approximate tracer of the Eddington ratio). Within our observed sample, we found a wide range of specific accretion rates. After correcting the observed sample for the varying sensitivity of 3XMM, we found further evidence for a wide range of X-ray luminosities and specific accretion rates, described by a power law. Using this corrected AGN sample we also define an AGN fraction describing their relative incidence within the parent sample. We found the AGN fraction increases with host galaxy mass (up to ≈6 per cent) for galaxies with X-ray luminosities between $10^{39} \, $ and $10^{42} \, \mathrm{erg\, s^{-1}}$, and by extrapolating the power law to higher luminosities, we found evidence to suggest the fraction of luminous AGN ($L_\mathrm{X} \ge 10^{42.4} \, \mathrm{erg\, s^{-1}}$) is constant out to z ≈ 0.7.

     
    more » « less
  3. ABSTRACT

    Using multiband data, we examine the star formation activity of the nearby group-dominant early-type galaxies of the Complete Local-volume Groups Sample (CLoGS) and the relation between star formation, gas content, and local environment. Only a small fraction of the galaxies (13 per cent; 6/47) are found to be far-ultraviolet (FUV) bright, with FUV to near-infrared colours indicative of recent active star formation (NGC 252, NGC 924, NGC 940, NGC 1106, NGC 7252, and ESO 507-25). These systems are lenticulars presenting the highest FUV-specific star formation rates in the sample (sSFRFUV > 5 × 1013 yr−1), significant cold gas reservoirs [M(H2) = 0.5-61 × 108 M⊙], reside in X-ray faint groups, and none hosts a powerful radio active galactic nucleus (AGN) (P$_{1.4\mathrm{ GHz}}\, \lt 10^{23}$ W Hz−1). The majority of the group-dominant galaxies (87 per cent; 41/47) are FUV faint, with no significant star formation, classified in most cases as spheroids based on their position on the infrared star-forming main sequence (87 per cent; 46/53). Examining the relationships between radio power, SFRFUV, and stellar mass, we find a lack of correlation that suggests a combination of origins for the cool gas in these galaxies, including stellar mass loss, cooling from the intra-group medium (IGrM) or galaxy halo, and acquisition through mergers or tidal interactions. X-ray bright systems, in addition to hosting radio powerful AGN, have a range of SFRs but, with the exception of NGC 315, do not rise to the highest rates seen in the FUV bright systems. We suggest that central group galaxy evolution is linked to gas mass availability, with star formation favoured in the absence of a group-scale X-ray halo, but AGN jet launching is more likely in systems with a cooling IGrM.

     
    more » « less
  4. ABSTRACT We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model, the new model provides a better match to a large number of up-to-date empirical constraints, including: (1) new galaxy and AGN luminosity functions; (2) stellar spectra including binary stars; (3) obscured and unobscured AGN; (4) a measurement of the non-ionizing UV background; (5) measurements of the intergalactic H i and He ii photoionization rates at z ∼ 0−6; (6) the local X-ray background; and (7) improved measurements of the intergalactic opacity. In this model, AGN dominate the H i ionizing background at z ≲ 3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z ∼ 2, the slow evolution of the H i ionization rate inferred from the high-redshift H i Ly α forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of $\approx 1{{\ \rm per\ cent}}$ suffices to ionize the intergalactic medium at z = 3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the He ii Ly α forest in hydrodynamic simulations. 
    more » « less
  5. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($M\approx 2\times 10^{14}\, \mathrm{M}_\odot$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less