skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency-resolved Lags in UV/Optical Continuum Reverberation Mapping
Abstract In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day−1, indicating they are dominated from reprocessing at size scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.  more » « less
Award ID(s):
1909199
PAR ID:
10361863
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 29
Size(s):
Article No. 29
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the Hβlag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags. 
    more » « less
  2. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of the CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected. 
    more » « less
  3. UV and optical continuum reverberation mapping is a powerful tool for probing the accretion disk and inner broad-line region. However, recent reverberation mapping campaigns in the X-ray, UV, and optical have found lags consistently longer than those expected from the standard disk reprocessing picture. The largest discrepancy to date was recently reported in Mrk 335, where UV/optical lags are up to 12 times longer than expected. Here, we perform a frequency-resolved time lag analysis of Mrk 335, using Gaussian processes to account for irregular sampling. For the first time, we compare the Fourier frequency-resolved lags directly to those computed using the popular interpolated cross-correlation function method applied to both the original and detrended light curves. We show that the anticipated disk reverberation lags are recovered by the Fourier lags when zeroing in on the short-timescale variability. This suggests that a separate variability component is present on long timescales. If this separate component is modeled as reverberation from another region beyond the accretion disk, we constrain a size scale of roughly 15 lt-days from the central black hole. This is consistent with the size of the broad-line region inferred from Hβreverberation lags. We also find tentative evidence for a soft X-ray lag, which we propose may be due to light travel time delays between the hard X-ray corona and distant photoionized gas that dominates the soft X-ray spectrum below 2 keV. 
    more » « less
  4. Abstract Disk continuum reverberation mapping is one of the primary ways we learn about active galactic nuclei (AGN) accretion disks. Reverberation mapping assumes that time-varying X-rays incident on the accretion disk drive variability in UV–optical light curves emitted by AGN disks and uses lags between X-ray and UV–optical variability on the light-crossing timescale to measure the radial temperature profile and extent of AGN disks. However, recent reverberation mapping campaigns have revealed oddities in some sources, such as weakly correlated X-ray and UV light curves, longer than anticipated lags, and evidence of intrinsic variability from disk fluctuations. To understand how X-ray reverberation works with realistic accretion disk structures, we perform 3D multifrequency radiation magnetohydrodynamic simulations of X-ray reprocessing by the UV-emitting region of an AGN disk using sophisticated opacity models that include line opacities for both the X-ray and UV radiation. We find there are two important factors that determine whether X-ray irradiation and UV emission will be well-correlated: the ratio of X-ray to UV luminosity and significant absorption. When these factors are met, the reprocessing of X-rays into UV is nearly instantaneous, as is often assumed, although linear reprocessing models are insufficient to fully capture X-ray reprocessing in our simulations. Nevertheless, we can still easily recover mock lags in our light curves using software that assumes linear reprocessing. Finally, the X-rays in our simulation heat the disk, increasing temperatures by a factor of 2–5 in the optically thin region, which could help explain the discrepancy between measured and anticipated lags. 
    more » « less
  5. ABSTRACT We have measured the wavelength-dependent lags between the X-ray, ultraviolet, and optical bands in the high-accretion rate ($$L/L_{\rm Edd}\approx 40{{\ \rm per\ cent}}$$) active galactic nucleus (AGN) Mrk 110 during two intensive monitoring campaigns in February and September 2019. After including the 2017 data published by Vincentelli et al., we divided the observations into three intervals with different X-ray luminosities. The first interval has the lowest X-ray luminosity and did not exhibit the U-band excess positive lag, or the X-ray excess negative lag that is seen in most AGNs. However, these excess lags are seen in the two subsequent intervals of higher X-ray luminosity. Although the data are limited, the excess lags appear to scale with X-ray luminosity. Our modelling shows that lags expected from reprocessing of X-rays by the accretion disc vary hardly at all with increasing luminosity. Therefore, as the U-band excess almost certainly arises from Balmer-continuum emission from the broad-line region (BLR), we attribute these lag changes to changes in the contribution from the BLR. The change is easily explained by the usual increase in the inner radius of the BLR with increasing ionizing luminosity. 
    more » « less