skip to main content

Title: Frequency-resolved Lags in UV/Optical Continuum Reverberation Mapping

In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day−1, indicating they are dominated from reprocessing at size more » scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.

« less
; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 29
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of themore »CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected.« less

    We have measured the wavelength-dependent lags between the X-ray, ultraviolet, and optical bands in the high-accretion rate ($L/L_{\rm Edd}\approx 40{{\ \rm per\ cent}}$) active galactic nucleus (AGN) Mrk 110 during two intensive monitoring campaigns in February and September 2019. After including the 2017 data published by Vincentelli et al., we divided the observations into three intervals with different X-ray luminosities. The first interval has the lowest X-ray luminosity and did not exhibit the U-band excess positive lag, or the X-ray excess negative lag that is seen in most AGNs. However, these excess lags are seen in the two subsequent intervals of higher X-ray luminosity. Although the data are limited, the excess lags appear to scale with X-ray luminosity. Our modelling shows that lags expected from reprocessing of X-rays by the accretion disc vary hardly at all with increasing luminosity. Therefore, as the U-band excess almost certainly arises from Balmer-continuum emission from the broad-line region (BLR), we attribute these lag changes to changes in the contribution from the BLR. The change is easily explained by the usual increase in the inner radius of the BLR with increasing ionizing luminosity.

  3. ABSTRACT We carried out photometric and spectroscopic observations of the well-studied broad-line radio galaxy 3C 120 with the Las Cumbres Observatory (LCO) global robotic telescope network from 2016 December to 2018 April as part of the LCO AGN Key Project on Reverberation Mapping of Accretion Flows. Here, we present both spectroscopic and photometric reverberation mapping results. We used the interpolated cross-correlation function to perform multiple-line lag measurements in 3C 120. We find the H γ, He ii λ4686, H β, and He i λ5876 lags of $\tau _{\text{cen}} = 18.8_{-1.0}^{+1.3}$, $2.7_{-0.8}^{+0.7}$, $21.2_{-1.0}^{+1.6}$, and $16.9_{-1.1}^{+0.9}$ d, respectively, relative to the V-band continuum. Using the measured lag and rms velocity width of the H β emission line, we determine the mass of the black hole for 3C 120 to be $M=(6.3^{+0.5}_{-0.3})\times 10^7\, (f/5.5)$ M⊙. Our black hole mass measurement is consistent with similar previous studies on 3C 120, but with small uncertainties. In addition, velocity-resolved lags in 3C 120 show a symmetric pattern across the H β line, 25 d at line centre decreasing to 17 d in the line wings at ±4000 km s−1. We also investigate the inter-band continuum lags in 3C 120 and find that they are generally consistent with τ ∝ λ4/3 as predicted from a geometrically thin, optically thick accretion disc. From the continuum lags,more »we measure the best-fitting value τ0 = 3.5 ± 0.2 d at $\lambda _{\rm 0} = 5477\, \mathring{\rm A}$. It implies a disc size a factor of 1.6 times larger than prediction from the standard disc model with L/LEdd = 0.4. This is consistent with previous studies in which larger than expected disc sizes were measured.« less
  4. ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negativemore »X-ray offset of ∼0.38 d from the standard disc delay prediction.« less
  5. Abstract In order to constrain the size of the optical continuum emission region in the dwarf Seyfert 1 galaxy NGC 4395 through reverberation mapping, we carried out high-cadence photometric monitoring in the griz filter bands on two consecutive nights in 2022 April using the four-channel MuSCAT3 camera on the Faulkes Telescope North at Haleakalā Observatory. Correlated variability across the griz bands is clearly detected, and the r -, i -, and z -band light curves show lags of 7.72 − 1.09 + 1.01 , 14.16 − 1.25 + 1.22 , and 20.78 − 2.09 + 1.99 minutes with respect to the g band when measured using the full-duration light curves. When lags are measured for each night separately, the Night 2 data exhibit lower cross-correlation amplitudes and shorter lags than the Night 1 light curves. Using the full-duration lags, we find that the lag–wavelength relationship is consistent with the τ ∝ λ 4/3 dependence found for more luminous active galactic nuclei. Combining our results with continuum lags measured for other objects, the lag between g and z band scales with optical continuum luminosity as τ gz ∝ L 0.56±0.05 , similar to the scaling of broad-line region size with luminosity,more »reinforcing recent evidence that diffuse continuum emission from the broad-line region may contribute substantially to optical continuum variability and reverberation lags.« less