skip to main content


Title: Snowpack signals in North American tree rings
Abstract

Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and provides unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high (<12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming.

 
more » « less
Award ID(s):
1803995
NSF-PAR ID:
10361914
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 034037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We describe the utility of false rings inTaxodium distichum(i.e. baldcypress) as a proxy for hydroclimatic extreme events in three different river basins (Pascagoula, Mobile, and Choctawhatchee) that discharge into the northern Gulf of Mexico. False rings occur as a result of a change in the environmental limiting resource for tree stem growth, and inT. distichum, false ring production is usually a result of increases in mid-growing season water availability. Our results show that false ring occurrence (from 1931 to 2018) is similar across sites but occur in different years, suggesting that false ring production is indicative of tree response to its local environment. False ring production inT. distichumhas previously been correlated with summer streamflow, the season when tropical cyclone precipitation (TCP) is highest. To assess a stand-wide response, we define high false ring (HFR) years as all years when20% of trees produced a false ring. We show total TCP in July is the best predictor for HFR years inT. distichum, and false ring production in smaller river basins captures local TCP better than larger river basins. Additionally, HFR years coincide with summers of anomalously high precipitation, anomalously low temperatures, and a positive phase of the North Atlantic Oscillation. 77% of HFR years occur in seasons when there is heavy tropical cyclone activity near sample sites, building a foundation to use false ring records as robust TCP proxies with hydroclimate reconstruction potential.

     
    more » « less
  2. In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE. 
    more » « less
  3. Abstract

    Liebig's law of the minimum posits that at any given time the growth factor that is least abundant, relative to physiological requirements, controls plant growth. Dendrochronological reconstructions of temperature and precipitation invoke Liebig's law to justify using tree growth as a proxy for climate and when choosing which trees to sample, but historically reconstruction techniques have not accounted for the influence of Liebig's law on differential growth between sampled trees within a given site. Such an influence implies that site‐wide limitations associated with regional climate variability would be most strongly expressed in tree rings experiencing high relative growth in a given year. We demonstrate that local Liebig's law stresses are globally identifiable across ring width and density data sets produced by over 300 different researchers. Furthermore, the local signature of Liebig's law is found at both temperature‐ and moisture‐limited sites. Chronologies based on trees undergoing the highest relative growth in a given year more accurately record climate variability than the mean chronology, especially at sites where more trees were sampled. These results suggest the potential for better reconstructing historical climate variability through pairing intensive tree‐ring sampling with a quantitative focus on those trees experiencing the highest relative growth.

     
    more » « less
  4. Abstract

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool‐season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool‐season standardized precipitation‐evapotranspiration index, April snow water equivalent, and water year streamflow from a network ofUSGSstream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree‐ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool‐season storm tracks entered western North America between approximately 41°N and 53°N. Cool‐season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south‐shifted storm tracks, while Canadian ecosystems were greener in years when the cool‐season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north‐shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool‐season storm tracks.

     
    more » « less
  5. Abstract

    Atmospheric rivers (ARs) reach High Mountain Asia (HMA) about 10 days per month during the winter and spring, resulting in about 20 mm day$$^{-1}$$-1of precipitation. However, a few events may exceed 100 mm day$$^{-1}$$-1, providing most of the total winter precipitation and increasing the risk of precipitation-triggered landslides and flooding, particularly when the height of the height of the 0 $$^{\circ }$$C isotherm, or freezing level is above-average. This study shows that from 1979 to 2015, integrated water vapor transport (IVT) during ARs that reach Western HMA has increased 16% while the freezing level has increased up to 35 m. HMA ARs that have an above-average freezing level result in 10–40% less frozen precipitation compared to ARs with a below-average freezing level. To evaluate the importance of these trends in the characteristics of ARs, we investigate mesoscale processes leading to orographic precipitation using Advanced Weather Research and Forecasting (ARW-WRF) simulations at 6.7 km spatial resolution. We contrast two above- and below- average freezing level AR events with otherwise broadly similar characteristics and show that with a 50–600 m increase in freezing level, the above-average AR resulted in 10–70% less frozen precipitation than the below-average event. This study contributes to a better understanding of climate change-related impacts within HMA’s hydrological cycle and the associated hazards to vulnerable communities living in the region.

     
    more » « less