skip to main content


Search for: All records

Award ID contains: 1803995

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extreme summer temperatures are increasingly common across the Northern Hemisphere and inflict severe socioeconomic and biological consequences. In summer 2021, the Pacific Northwest region of North America (PNW) experienced a 2-week-long extreme heatwave, which contributed to record-breaking summer temperatures. Here, we use tree-ring records to show that summer temperatures in 2021, as well as the rate of summertime warming during the last several decades, are unprecedented within the context of the last millennium for the PNW. In the absence of committed efforts to curtail anthropogenic emissions below intermediate levels (SSP2–4.5), climate model projections indicate a rapidly increasing risk of the PNW regularly experiencing 2021-like extreme summer temperatures, with a 50% chance of yearly occurrence by 2050. The 2021 summer temperatures experienced across the PNW provide a benchmark and impetus for communities in historically temperate climates to account for extreme heat-related impacts in climate change adaptation strategies.

     
    more » « less
  2. Abstract

    The western United States (US) is a hotspot for snow drought. The Oregon Cascade Range is highly sensitive to warming and as a result has experienced the largest mountain snowpack losses in the western US since the mid‐20th century, including a record‐breaking snow drought in 2014–2015 that culminated in a state of emergency. While Oregon Cascade snowpacks serve as the state's primary water supply, short instrumental records limit water managers' ability to fully constrain long‐term natural snowpack variability prior to the influence of ongoing and projected anthropogenic climate change. Here, we use annually‐resolved tree‐ring records to develop the first multi‐century reconstruction of Oregon Cascade April 1st Snow Water Equivalent (SWE). The model explains 58% of observed snowpack variability and extends back to 1688 AD, nearly quintupling the length of the existing snowpack record. Our reconstruction suggests that only one other multiyear event in the last three centuries was as severe as the 2014–2015 snow drought. The 2015 event alone was more severe than nearly any other year in over three centuries. Extreme low‐to‐high snowpack “whiplash” transitions are a consistent feature throughout the reconstructed record. Multi‐decadal intervals of persistent below‐the‐mean peak SWE are prominent features of pre‐instrumental snowpack variability, but are generally absent from the instrumental period and likely not fully accounted for in modern water management. In the face of projected snow drought intensification and warming, our findings motivate adaptive management strategies that address declining snowpack and increasingly variable precipitation regimes.

     
    more » « less
  3. Abstract

    The decline in snowpack across the western United States is one of the most pressing threats posed by climate change to regional economies and livelihoods. Earth system models are important tools for exploring past and future snowpack variability, yet their coarse spatial resolutions distort local topography and bias spatial patterns of accumulation and ablation. Here, we explore pattern-based statistical downscaling for spatially-continuous interannual snowpack estimates. We find that a few leading patterns capture the majority of snowpack variability across the western US in observations, reanalyses, and free-running simulations. Pattern-based downscaling methods yield accurate, high resolution maps that correct mean and variance biases in domain-wide simulated snowpack. Methods that use large-scale patterns as both predictors and predictands perform better than those that do not and all are superior to an interpolation-based “delta change” approach. These findings suggest that pattern-based methods are appropriate for downscaling interannual snowpack variability and that using physically meaningful large-scale patterns is more important than the details of any particular downscaling method.

     
    more » « less
  4. Abstract

    Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and provides unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high (<12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming.

     
    more » « less
  5. Abstract

    California’s water resources rely heavily on cool‐season (November–March) precipitation in the Sierra Nevada. Interannual variability is highly volatile and seasonal forecasting has little to no skill, making water management particularly challenging. Over 1902–2020, Sierra Nevada cool‐season precipitation totals exhibited significant 2.2‐ and 13–15‐year cycles, accounting for approximately 40% of total variability and perhaps signifying potential as seasonal forecasting tools. However, the underlying climate dynamics are not well understood and it is unclear whether these cycles are stable over the long term. We use tree rings to reconstruct Sierra Nevada cool‐season precipitation back to 1400. The reconstruction is skillful, accounting for 55%–74% of observed variability and capturing the 20th‐century 2.2‐ and 13–15‐year cycles. Prior to 1900, the reconstruction indicates no other century‐long periods of significant spectral power in the 2.2‐ or 13–15‐year bands. The reconstruction does indicate significant cyclicity over other extended periods of several decades or longer, however, with dominant periodicities in the ranges of 2.1–2.7 and 3.5–8 years. The late 1700s through 1800s exhibited the highest‐amplitude cycles in the reconstruction, with periodicities of 2.4 and 5.7–7.4 years. The reconstruction should serve to caution against extrapolating the observed 2.2‐ and 13–15‐year cycles to guide future expectations. On the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada cool‐season precipitation is not a purely white noise process and research should aim to diagnose the dynamical drivers of extended periods of cyclicity in this critical natural resource.

     
    more » « less
  6. Across the Upper Missouri River Basin, the recent drought of 2000 to 2010, known as the “turn-of-the-century drought,” was likely more severe than any in the instrumental record including the Dust Bowl drought. However, until now, adequate proxy records needed to better understand this event with regard to long-term variability have been lacking. Here we examine 1,200 y of streamflow from a network of 17 new tree-ring–based reconstructions for gages across the upper Missouri basin and an independent reconstruction of warm-season regional temperature in order to place the recent drought in a long-term climate context. We find that temperature has increasingly influenced the severity of drought events by decreasing runoff efficiency in the basin since the late 20th century (1980s) onward. The occurrence of extreme heat, higher evapotranspiration, and associated low-flow conditions across the basin has increased substantially over the 20th and 21st centuries, and recent warming aligns with increasing drought severities that rival or exceed any estimated over the last 12 centuries. Future warming is anticipated to cause increasingly severe droughts by enhancing water deficits that could prove challenging for water management. 
    more » « less