skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Fragmentation in turbulence by small eddies
Abstract

From air-sea gas exchange, oil pollution, to bioreactors, the ubiquitous fragmentation of bubbles/drops in turbulence has been modeled by relying on the classical Kolmogorov-Hinze paradigm since the 1950s. This framework hypothesizes that bubbles/drops are broken solely by eddies of the same size, even though turbulence is well known for its wide spectrum of scales. Here, by designing an experiment that can physically and cleanly disentangle eddies of various sizes, we report the experimental evidence to challenge this hypothesis and show that bubbles are preferentially broken by the sub-bubble-scale eddies. Our work also highlights that fragmentation cannot be quantified solely by the stress criterion or the Weber number; The competition between different time scales is equally important. Instead of being elongated slowly and persistently by flows at their own scales, bubbles are fragmented in turbulence by small eddies via a burst of intense local deformation within a short time.

 
more » « less
Award ID(s):
1905103
PAR ID:
10361998
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    In turbulence, non-linear terms drive energy transfer from large-scale eddies into small scales through the so-called energy cascade. Turbulence often relaxes toward states that minimize energy; typically these states are considered globally. However, turbulence can also relax toward local quasi-equilibrium states, creating patches or cells where the magnitude of non-linearity is reduced and the energy cascade is impaired. We show, using data from the Magnetospheric Multiscale (MMS) mission, and for the first time, compelling observational evidence that this ‘cellularization’ of turbulence can occur due to local relaxation in a strongly turbulent natural environment such as the Earth’s magnetosheath.

     
    more » « less
  2. One of the most controversial topics in the field of convection in porous media is the issue of macroscopic turbulence. It remains unclear whether it can occur in porous media. It is difficult to carry out velocity measurements within porous media, as they are typically optically opaque. At the same time, it is now possible to conduct a definitive direct numerical simulation (DNS) study of this phenomenon. We examine the processes that take place in porous media at large Reynolds numbers, attempting to accurately describe them and analyze whether they can be labeled as true turbulence. In contrast to existing work on turbulence in porous media, which relies on certain turbulence models, DNS allows one to understand the phenomenon in all its complexity by directly resolving all the scales of motion. Our results suggest that the size of the pores determines the maximum size of the turbulent eddies. If the size of turbulent eddies cannot exceed the size of the pores, then turbulent phenomena in porous media differ from turbulence in clear fluids. Indeed, this size limitation must have an impact on the energy cascade, for in clear fluids the turbulent kinetic energy is predominantly contained within large eddies. 
    more » « less
  3. Abstract

    A state‐of‐the‐art Lagrangian microphysics scheme is used in a large‐eddy simulation to investigate the stratocumulus transition from closed to open cell structure. Processes controlling precipitation development, which is a key to the transition, are analyzed by leveraging unique benefits of Lagrangian microphysics, particularly the ability to track computational drops in the flow. Sufficient time is needed for coalescence growth of cloud drops to drizzle within the updraft‐downdraft cycle of large eddies. This favors broad drop size distributions (DSDs) and drizzle growth in downdrafts, where drops are typically much older than in updrafts. During the closed cell stage, mean cloud drop radius is too small, and the DSDs are too narrow, so that the timescale for coalescence is much longer than the large eddy turnover time and drizzle growth is limited. The closed‐to‐open cell transition occurs when these timescales become comparable and the precipitation flux increases sharply.

     
    more » « less
  4. The dynamics of a three-phase gas–liquid–liquid multiphase system is examined by direct numerical simulations. The system consists of a continuous liquid phase, buoyant gas bubbles, and smaller heavy drops that fall relative to the continuous liquid. The computational domain is fully periodic, and a force equal to the weight of the mixture is added to keep it in place. The governing parameters are selected so that the terminal Reynolds numbers of the bubbles and the drops are moderate; while the effect of bubble deformability is examined by changing its surface tension, the surface tension for the drops is sufficiently high so they do not deform. One bubble in a “unit cell” and eight freely interacting bubbles are examined. The dependency of the slip velocities, the velocity fluctuations, and the distribution of the dispersed phases on the volume fraction of each phase are examined. It is found that while the distribution of drops around a single bubble in a “unit cell” is uneven and depends on its deformability, the distribution of drops around freely interacting bubbles is relatively uniform for the parameters examined in this study. 
    more » « less
  5. Abstract

    Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (𝒪(mm)) up to large energy-containing structures (𝒪(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021–2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.

     
    more » « less