Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separated by velocity jumps representing the internal shear layers. Height-dependent UMZ is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise (modal) and vertical velocities. These are informed by experimental observations and reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling, consistent with the corresponding experimental datasets. Sets of independently generated profiles are reorganized in the streamwise direction to form a spatially consistent modal velocity field, starting from any randomly selected profile. The operation allows one to stretch or compress the velocity field in space, increases the size of the domain and adjusts the size of the largest emerging structures to the Reynolds number of the simulated flow. By imposing the autocorrelation function of the modal velocity field to be anchored on the experimental measurements, we obtain a physically based spatial resolution, which is employed in the computation of the velocity spectrum, and second-order structure functions. The results reproduce the Kolmogorov inertial range extending from the UMZ and their attached-eddy vertical organization to the very-large-scale motions (VLSMs) introduced with the reordering process. The dynamic role of VLSM is confirmed in the$$-u^{\prime }w^{\prime }$$co-spectra and in their vertical derivative, representing a scale-dependent pressure gradient contribution.
more »
« less
Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements
Recent works on wall-bounded flows have corroborated the coexistence of wall-attached eddies, whose statistical features are predicted through Townsend's attached-eddy hypothesis (AEH), and very-large-scale motions (VLSMs). Furthermore, it has been shown that the presence of wall-attached eddies within the logarithmic layer is linked to the appearance of an inverse-power-law region in the streamwise velocity energy spectra, upon significant separation between outer and viscous scales. In this work, a near-neutral atmospheric surface layer is probed with wind light detection and ranging to investigate the contributions to the streamwise velocity energy associated with wall-attached eddies and VLSMs for a very-high-Reynolds-number boundary layer. Energy and linear coherence spectra (LCS) of the streamwise velocity are interrogated to identify the spectral boundaries associated with eddies of different typologies. Inspired by the AEH, an analytical model for the LCS associated with wall-attached eddies is formulated. The experimental results show that the identification of the wall-attached-eddy energy contribution through the analysis of the energy spectra leads to an underestimate of the associated spectral range, maximum height attained and turbulence intensity. This feature is due to the overlap of the energy associated with VLSMs obscuring the inverse-power-law region. The LCS analysis estimates wall-attached eddies with a streamwise/wall-normal ratio of about 14.3 attaining a height of about 30 % of the outer scale of turbulence.
more »
« less
- PAR ID:
- 10483323
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 955
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We discuss the Onsager theory of wall-bounded turbulence, analysing the momentum dissipation anomaly hypothesized by Taylor. Turbulent drag laws observed with both smooth and rough walls imply ultraviolet divergences of velocity gradients. These are eliminated by a coarse-graining operation, filtering out small-scale eddies and windowing out near-wall eddies, thus introducing two arbitrary regularization length-scales. The regularized equations for resolved eddies correspond to the weak formulation of the Navier–Stokes equation and contain, in addition to the usual turbulent stress, also an inertial drag force modelling momentum exchange with unresolved near-wall eddies. Using an Onsager-type argument based on the principle of renormalization group invariance, we derive an upper bound on wall friction by a function of Reynolds number determined by the modulus of continuity of the velocity at the wall. Our main result is a deterministic version of Prandtl’s relation between the Blasius − 1 / 4 drag law and the 1/7 power-law profile of the mean streamwise velocity. At higher Reynolds, the von Kármán–Prandtl drag law requires instead a slow logarithmic approach of velocity to zero at the wall. We discuss briefly also the large-eddy simulation of wall-bounded flows and use of iterative renormalization group methods to establish universal statistics in the inertial sublayer. This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.more » « less
-
Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( $${>}300\delta _i$$ , with $$\delta _i$$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $$Re_\tau \approx 1200$$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.more » « less
-
null (Ed.)Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales.more » « less
-
This paper employs an input–output based approach to analyse the convective velocities and transport of fluctuations in turbulent channel flows. The convective velocity for a fluctuating quantity associated with streamwise–spanwise wavelength pairs at each wall-normal location is obtained through the maximization of the power spectral density associated with the linearized Navier–Stokes equations with a turbulent mean profile and delta-correlated Gaussian forcing. We first demonstrate that the mean convective velocities computed in this manner agree well with those reported previously in the literature. We then exploit the analytical framework to probe the underlying mechanisms contributing to the local convective velocity at different wall-normal locations by isolating the contributions of each streamwise–spanwise wavelength pair (flow scale). The resulting analysis suggests that the behaviour of the convective velocity in the near-wall region is influenced by large-scale structures further away from the wall. These structures resemble Townsend’s attached eddies in the cross-plane, yet show incomplete similarity in the streamwise direction. We then investigate the role of each linear term in the momentum equation to isolate the contribution of the pressure, mean shear, and viscous effects to the deviation of the convective velocity from the mean at each flow scale. Our analysis highlights the role of the viscous effects, particularly in regards to large channel spanning structures whose influence extends to the near-wall region. The results of this work suggest the promise of an input–output approach for analysing convective velocity across a range of flow scales using only the mean velocity profile.more » « less
An official website of the United States government

