skip to main content

Title: Multimessenger time-domain signatures of supermassive black hole binaries
ABSTRACT

Supermassive black hole binaries (SMBHBs) are a natural outcome of galaxy mergers and should form frequently in galactic nuclei. Sub-parsec binaries can be identified from their bright electromagnetic emission, e.g. Active Galactic Nuclei (AGNs) with Doppler shifted broad emission lines or AGN with periodic variability, as well as from the emission of strong gravitational radiation. The most massive binaries (with total mass >108M⊙) emit in the nanohertz band and are targeted by Pulsar Timing Arrays (PTAs). Here we examine the synergy between electromagnetic and gravitational wave signatures of SMBHBs. We connect both signals to the orbital dynamics of the binary and examine the common link between them, laying the foundation for joint multimessenger observations. We find that periodic variability arising from relativistic Doppler boost is the most promising electromagnetic signature to connect with GWs. We delineate the parameter space (binary total mass/chirp mass versus binary period/GW frequency) for which joint observations are feasible. Currently multimessenger detections are possible only for the most massive and nearby galaxies, limited by the sensitivity of PTAs. However, we demonstrate that as PTAs collect more data in the upcoming years, the overlapping parameter space is expected to expand significantly.

Authors:
 ;  ;  ;  ;  
Award ID(s):
2020265 2009539 1945546 2108668 1908042 2007993
Publication Date:
NSF-PAR ID:
10362035
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
4
Page Range or eLocation-ID:
p. 5929-5944
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar timing array (PTA) experiments are becoming increasingly sensitive to gravitational waves (GWs) in the nanohertz frequency range, where the main astrophysical sources are supermassive black hole binaries (SMBHBs), which are expected to form following galaxy mergers. Some of these individual SMBHBs may power active galactic nuclei, and thus their binary parameters could be obtained electromagnetically, which makes it possible to apply electromagnetic (EM) information to aid the search for a GW signal in PTA data. In this work, we investigate the effects of such an EM-informed search on binary detection and parameter estimation by performing mock data analyses on simulated PTA data sets. We find that by applying EM priors, the Bayes factor of some injected signals with originally marginal or sub-threshold detectability (i.e., Bayes factor ∼1) can increase by a factor of a few to an order of magnitude, and thus an EM-informed targeted search is able to find hints of a signal when an uninformed search fails to find any. Additionally, by combining EM and GW data, one can achieve an overall improvement in parameter estimation, regardless of the source’s sky location or GW frequency. We discuss the implications for the multi-messenger studies of SMBHBs withmore »PTAs.« less
  2. Abstract

    The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the localmore »number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.

    « less
  3. Abstract

    Most stellar evolution models predict that black holes (BHs) should not exist above approximately 50–70M, the lower limit of the pair-instability mass gap. However, recent LIGO/Virgo detections indicate the existence of BHs with masses at and above this threshold. We suggest that massive BHs, including intermediate-mass BHs (IMBHs), can form in galactic nuclei through collisions between stellar-mass BHs and the surrounding main-sequence stars. Considering dynamical processes such as collisions, mass segregation, and relaxation, we find that this channel can be quite efficient, forming IMBHs as massive as 104M. This upper limit assumes that (1) the BHs accrete a substantial fraction of the stellar mass captured during each collision and (2) that the rate at which new stars are introduced into the region near the SMBH is high enough to offset depletion by stellar disruptions and star–star collisions. We discuss deviations from these key assumptions in the text. Our results suggest that BHs in the pair-instability mass gap and IMBHs may be ubiquitous in galactic centers. This formation channel has implications for observations. Collisions between stars and BHs can produce electromagnetic signatures, for example, from X-ray binaries and tidal disruption events. Additionally, formed through this channel, both BHs in themore »mass gap and IMBHs can merge with the SMBHs at the center of a galactic nucleus through gravitational waves. These gravitational-wave events are extreme- and intermediate-mass ratio inspirals.

    « less
  4. ABSTRACT Variable active galactic nuclei showing periodic light curves have been proposed as massive black hole binary (MBHB) candidates. In such scenarios, the periodicity can be due to relativistic Doppler-boosting of the emitted light. This hypothesis can be tested through the timing of scattered polarized light. Following the results of polarization studies in type I nuclei and of dynamical studies of MBHBs with circumbinary discs, we assume a coplanar equatorial scattering ring, whose elements contribute differently to the total polarized flux, due to different scattering angles, levels of Doppler boost, and line-of-sight time delays. We find that in the presence of an MBHB, both the degree of polarization and the polarization position angle have periodic modulations. The polarization angle oscillates around the semiminor axis of the projected MBHB orbital ellipse, with a frequency equal either to the binary’s orbital frequency (for large scattering screen radii), or twice this value (for smaller scattering structures). These distinctive features can be used to probe the nature of periodic MBHB candidates and to compile catalogues of the most promising sub-pc MBHBs. The identification of such polarization features in gravitational-wave (GW) detected MBHBs would enormously increase the amount of physical information about the sources, allowingmore »the measurement of the individual masses of the binary components, and the orientation of the line of nodes on the sky, even for monochromatic GW signals.« less
  5. ABSTRACT

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map ofmore »the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

    « less