skip to main content

Title: Phylogenomics and Fossil Data Inform the Systematics and Geographic Range Evolution of a Diverse Neotropical Ant Lineage
Abstract

Recent advances in phylogenomics allow for the use of large amounts of genetic information in phylogenetic inference. Ideally, the increased resolution and accuracy of such inferences facilitate improved understanding of macroevolutionary processes. Here, we integrate ultraconserved elements (UCEs) with fossil and biogeographic range data to explore diversification and geographic range evolution in the diverse turtle ant genus Cephalotes Latreille, 1802 (Hymenoptera: Formicidae). We focus on the potential role of the uplift of the Panamanian land bridge and the putative ephemeral GAARlandia land bridge linking South America and the Antilles in shaping evolution in this group. Our phylogenetic analyses provide new resolution to the backbone of the turtle ant phylogeny. We further found that most geographic range shifts between South America and Central America regions were temporally consistent with the development of the Panamanian land bridge, while we did not find support for the GAARlandia land bridge. Additionally, we did not infer any shifts in diversification rates associated with our focal land bridges, or any other historical events (we inferred a single diversification rate regime across the genus). Our findings highlight the impact of the Panamanian land bridge for Cephalotes geographic range evolution as well as the influence of taxonomic more » sampling on macroevolutionary inferences.

« less
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10362037
Journal Name:
Insect Systematics and Diversity
Volume:
6
Issue:
1
ISSN:
2399-3421
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. Themore »rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae.« less
  2. Abstract

    Scorpions are an excellent system for understanding biogeographical patterns. Most major scorpion lineages predate modern landforms, making them suitable for testing hypotheses of vicariance and dispersal. The Caribbean islands are endowed with a rich and largely endemic scorpion fauna, the origins of which have not been previously investigated with modern biogeographical methods. Three sets of hypotheses have been proposed to explain present patterns of diversity in the Caribbean: (1) connections via land bridges, (2) vicariance events, and (3) overwater dispersal from continents and among islands. The present study investigates the biogeographical diversification of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955, a clade of seven genera and more than 110 species; infers the ancestral distributions of these scorpions; and tests the relative roles of vicariance and dispersal in the formation of their present distributions. A fossil-calibrated molecular phylogeny was estimated with a Bayesian criterion to infer the dates of diversification events from which ancestral distributions were reconstructed, and the relative likelihood of models of vicariance vs. dispersal, calculated. Although both the timing of diversification and the ancestral distributions were congruent with the GAARlandia land-bridge hypothesis, there was no significant difference between distance-dependent models with or without the land-bridge.HeteroctenusPocock,more »1893, the Caribbean-endemic sister taxon ofCentruroidesMarx, 1890 provides evidence for a Caribbean ancestor, which subsequently colonized Central America and North America, and eventually re-colonized the Greater Antilles. This ‘reverse colonization’ event of a continent from an island demonstrates the importance of islands as a potential source of biodiversity.

    « less
  3. Abstract Habitat transitions are key potential explanations for why some lineages have diversified and others have not—from Anolis lizards to Darwin's finches. The ecological ramifications of marine-to-freshwater transitions for fishes suggest evolutionary contingency: some lineages maintain their ancestral niches in novel habitats (niche conservatism), whereas others alter their ecological role. However, few studies have considered phenotypic, ecological, and lineage diversification concurrently to explore this issue. Here, we investigated the macroevolutionary history of the taxonomically and ecologically diverse Neotropical freshwater river rays (subfamily Potamotrygoninae), which invaded and diversified in the Amazon and other South American rivers during the late Oligocene to early Miocene. We generated a time-calibrated, multi-gene phylogeny for Potamotrygoninae and reconstructed evolutionary patterns of diet specialization. We measured functional morphological traits relevant for feeding and used comparative phylogenetic methods to examine how feeding morphology diversified over time. Potamotrygonine trophic and phenotypic diversity are evenly partitioned (non-overlapping) among internal clades for most of their history, until 20–16 mya, when more recent diversification suggests increasing overlap among phenotypes. Specialized piscivores (Heliotrygon and Paratrygon) evolved early in the history of freshwater stingrays, while later trophic specialization (molluscivory, insectivory, and crustacivory) evolved in the genus Potamotrygon. Potamotrygonins demonstrate ecological niche lability in dietsmore »and feeding apparatus; however, diversification has mostly been a gradual process through time. We suggest that competition is unlikely to have limited the potamotrygonine invasion and diversification in South America.« less
  4. Abstract

    The history of the currently disjunct temperate rainforests of the Pacific Northwest of North America has shaped the evolution and diversity of endemics. This study focuses on how geological and climatic perturbations have driven speciation in the area by isolating lineages. We investigated the phylogenetic relationships and historical biogeography of the endemic jumping slugs (genus Hemphillia) using a multi-locus phylogeny. We evaluated the spatial distribution and divergence times of major lineages, generated ancestral area probabilities and inferred the biogeographical history of the genus. Our study revealed eight genetic lineages that formed three clades: one clade consisting of two Coast/Cascade lineages, and two reciprocally monophyletic clades that each contain a Coast/Cascade and two Rocky Mountains taxa. The results of the biogeographical analysis suggest that the ancestral range of the genus occupied Coast/Cascade habitats and then spread across into Northern Rocky Mountain interior habitats with subsequent fragmentations isolating coastal and inland lineages. Finally, there have been more recent speciation events among three lineage pairs that have shaped shallow structures of all clades. We add to our knowledge of the biogeographical history of the region in that we discovered diversification and speciation events that have occurred in ways more complex than previouslymore »thought.

    « less
  5. Coniochaeta (Coniochaetaceae, Ascomycota) is a diverse genus that includes a striking richness of undescribed species with endophytic lifestyles, especially in temperate and boreal plants and lichens. These endophytes frequently represent undescribed species that can clarify evolutionary relationships and trait evolution within clades of previously classified fungi. Here we extend the geographic, taxonomic, and host sampling presented in a previous analysis of the clade containing Coniochaeta endophytica, a recently described species occurring as an endophyte from North America; and C. prunicola, associated with necroses of stonefruit trees in South Africa. Our multi-locus analysis and examination of metadata for endophyte strains housed in the Robert L. Gilbertson Mycological Herbarium at the University of Arizona (ARIZ) (1) expands the geographic range of C. endophytica across a wider range of the USA than recognized previously; (2) shows that the ex-type of C. prunicola (CBS 120875) forms a well-supported clade with endophytes of native hosts in North Carolina and Michigan, USA; (3) reveals that the ex-paratype for C. prunicola (CBS 121445) forms a distinct clade with endophytes from North Carolina and Russia, is distinct morphologically from the other taxa considered here, and is described herein as Coniochaeta lutea; and (4) describes a new species, Coniochaetamore »palaoa, here identified as an endophyte of multiple plant lineages in the highlands and piedmont of North Carolina. Separation of CBS 120875 and CBS 121445 into C. prunicola sensu stricto and C. lutea is consistent with previously described genomic differences between these isolates, and morphological and functional differences among the four species (C. endophytica, C. prunicola, C. palaoa, and C. lutea) underscore the phylogenetic relationships described here. The resolving power of particular loci and the emerging perspective on the host- and geographic range of Coniochaeta and the C. endophytica / C. prunicola clade are discussed.« less