Abstract A new 36.17 MHz all‐sky meteor radar was installed at McMurdo Station Antarctica (77.8°S, 166.7°E) in February 2018 to provide wind measurements in the mesosphere and lower thermosphere (MLT) region (70–120 km). This instrument is the highest latitude meteor radar currently in operation in the southern hemisphere; it joins two other meteor radars within the Antarctic Circle. The radar will provide long‐term continuous wind measurements of the polar region, and contribute to a greater understanding of MLT dynamics. This work describes the radar hardware and its context with other instruments in the region. The paper provides an overview of the spatial and temporal variation in meteor echoes over the observation period of March 2018 through October 2021. It also provides an analysis of the mean winds and solar tides over the first three years of operation; including a description of an observed 12 hr summertime wind oscillation consistent with previously documented observations of a westward propagating 12 hr non‐migrating tide of zonal wavenumber 1.
more »
« less
Study of a Quasi‐27‐Day Wave in the MLT Region During Recurrent Geomagnetic Storms in Autumn 2018
Abstract A quasi‐27‐day wave (Q27DW) caused by the rotational period of solar radiation is commonly observed in the atmospheric dynamics. In the present study, we report an enhancement of a Q27DW during recurrent geomagnetic storms in the autumn of 2018 based on the zonal wind observations in the mesosphere and lower thermosphere (MLT) region over Beijing (BJ, 40.3°N, 116.2°E). According to our analysis, the solar radiation and the seasonal variation are not important in exciting the observed Q27DW. A 27‐day oscillation exists in both solar wind data andKpindex during the recurrent geomagnetic storms. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and ozone data also reveal a Q27DW signature at 97 km. Using the long‐term observation of BJ meteor radar, two more cases are found during springtime in 2010 and 2018 under the solar quiet condition. Our results indicate that the recurrent geomagnetic storms due to high‐speed solar winds can modulate the temperature and ozone in the MLT region, which is responsible for generating a Q27DW in the MLT zonal winds over BJ. This study suggests that the variation of planetary waves in the MLT neutral winds at mid‐latitude is likely associated with the recurrent geomagnetic storms and high‐speed solar winds.
more »
« less
- Award ID(s):
- 1744033
- PAR ID:
- 10362076
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 126
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an analysis of planetary‐scale oscillations during sudden stratospheric warming (SSW) events based on data obtained from a meteor radar located at Mohe (MH, 53.5°N, 122.3°E), the Aura satellite and Modern‐Era Retrospective analysis for Research and Applications, Version 2 data (MERRA2). The planetary‐scale oscillations in the mesosphere and lower thermosphere (MLT) region during eight SSW events from 2012 to 2019 have been statistically investigated. Our analysis reveals that the enhancement or the generation of westward propagating quasi 16‐day oscillation with wavenumber 1 (W1) is a common feature during SSWs over MH. A strong enhancement of the quasi 4‐day oscillation during the 2018/2019 SSW is captured by both radar and satellite observations. The amplified quasi 4‐day oscillation has a period of ~4.3 days in both meridional and zonal winds and with a wavenumber of W2 in the zonal component. Using the meteor radar and MERRA2 data, the vertical structure of the quasi 4‐day oscillation from the stratosphere to the lower thermosphere is derived. The upward propagating feature of the quasi 4‐day oscillation in the meridional component indicates that the oscillation is very likely generated in the lower mesosphere. The mesospheric zonal wind reversal after an elevated stratopause event is observed during the SSW, which results in a negative meridional gradient of the quasi‐geostrophic potential vorticity. Our results not only reveal that the amplified quasi 4‐day oscillation in the MLT region is associated with the 2018/2019 SSW but also suggest that the amplification is originally generated around 60 km due to barotropic/baroclinic instability and propagates upward to MLT region.more » « less
-
Abstract The effect of storms driven by solar wind high‐speed streams (HSSs) on the high‐latitude ionosphere is inadequately understood. We study the ionosphericF‐region during a moderate magnetic storm on 14 March 2016 using the EISCAT Tromsø and Svalbard radar latitude scans. AMPERE field‐aligned current (FAC) measurements are also utilized. Long‐duration 5‐day electron density depletions (20%–80%) are the dominant feature outside of precipitation‐dominated midnight and morning sectors. Depletions are found in two major regions. In the afternoon to evening sector (12–21 magnetic local time, MLT) the depleted region is 10–18 magnetic latitude (MLAT) in width, with the largest latitudinal extent 62–80 MLAT in the afternoon. The second region is in the morning to pre‐noon sector (04–10 MLT), where the depletion region occurs at 72–80 MLAT within the auroral oval and extends to the polar cap. Using EISCAT ion temperature and ion velocity data, we show that local ion‐frictional heating is observed roughly in 50% of the depleted regions with ion temperature increase by 200 K or more. For the rest of the depletions, we suggest that the mechanism is composition changes due to ion‐neutral frictional heating transported by neutral winds. Even though depletedF‐regions may occur within any of the large‐scale FAC regions or outside of them, the downward FAC regions (R2 in the afternoon and evening, R0 in the afternoon, and R1 in the morning) are favored, suggesting that downward currents carried by upward moving ionospheric electrons may provide a small additional effect for depletion.more » « less
-
Abstract Penetrating and disturbed electric fields develop during geomagnetic storms and are effective in driving remarkable changes in the nightside low latitude ionosphere over varying time periods. While the former arrive nearly instantaneously with the changes in the solar wind electric field, the latter take more time, requiring auroral heating to modify upper atmospheric winds globally, leading to changes in the thermospheric wind dynamo away from the auroral zones. Such changes always differ from the quiet time state where the winds are usually patterned after daytime solar heating. We use the Multiscale Atmosphere‐Geospace Environment model (MAGE) and observations from the NASA Ionospheric Connection Explorer (ICON) mission to investigate both during the 7–8 July 2022 geomagnetic storm event. The model was able to simulate the penetrating and disturbed electric fields. The simulations showed enhanced westward winds and the wind dynamo induced upward ion drift confirmed by the ICON zonal wind and ion drift observations. The simulated zonal wind variations are slightly later in arrival at the low latitudes. We also see the penetrating electric field opposes or cancels the disturbed electric field in the MAGE simulation.more » « less
-
Abstract Based on the meteor winds measured at Mohe (MH; 53.5°N, 122.3°E) and the reanalysis data, we investigate the variations of planetary waves in the mesosphere and lower thermosphere (MLT) region during the 2019/2020 Arctic winter. Four stratospheric polar warmings, including two sudden stratospheric warmings (SSWs), are observed from November 2019 to March 2020. Quasi‐10‐day waves (Q10DWs) are found to be enhanced following three of these warmings in the zonal winds in the MLT region over MH, but unusually weak after the SSW in February 2020. The trigger mechanisms of the enhanced Q10DWs are investigated and the reason for the unusually weak Q10DWs in February is revealed. Upward propagations and in situ generations of Q10DWs are both limited during the February SSW. Our analysis indicates that Q10DWs in the MLT region in February 2020 are largely inhibited by the extremely strong polar vortex and a lack of mesospheric instability.more » « less
An official website of the United States government
