We simulated the Nov 3-4, 2021 geomagnetic storm event penetrating electric field using the Multiscale Atmosphere-Geospace Environment (MAGE) model and compared with the NASA ICON observation. The ICON observation showed sudden enhancement of the vertical ion drift when the penetrating electric field arrived at the equatorial region. The MAGE model simulated vertical ion drifts have the similarly fast enhancement that shown in the ICON data at the same UT time and satellite location. Hence, ICON ion drift data was able to verify MAGE simulation, which couples the magnetospheric model was able to simulate the penetrating electric field very well.
more »
« less
This content will become publicly available on April 1, 2026
Penetrating Electric Field With/Without Disturbed Electric Fields During the 7–8 July 2022 Geomagnetic Storm Simulated by MAGE and Observed by ICON MIGHTI
Abstract Penetrating and disturbed electric fields develop during geomagnetic storms and are effective in driving remarkable changes in the nightside low latitude ionosphere over varying time periods. While the former arrive nearly instantaneously with the changes in the solar wind electric field, the latter take more time, requiring auroral heating to modify upper atmospheric winds globally, leading to changes in the thermospheric wind dynamo away from the auroral zones. Such changes always differ from the quiet time state where the winds are usually patterned after daytime solar heating. We use the Multiscale Atmosphere‐Geospace Environment model (MAGE) and observations from the NASA Ionospheric Connection Explorer (ICON) mission to investigate both during the 7–8 July 2022 geomagnetic storm event. The model was able to simulate the penetrating and disturbed electric fields. The simulations showed enhanced westward winds and the wind dynamo induced upward ion drift confirmed by the ICON zonal wind and ion drift observations. The simulated zonal wind variations are slightly later in arrival at the low latitudes. We also see the penetrating electric field opposes or cancels the disturbed electric field in the MAGE simulation.
more »
« less
- Award ID(s):
- 2120511
- PAR ID:
- 10635872
- Publisher / Repository:
- Willy
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt.more » « less
-
Abstract Results from a dynamo electric field model are presented to examine the consistency of the widely used empirical models of low‐latitude plasma drifts and thermospheric neutral winds. The sector defined by the Jicamarca Radar measured plasma drifts is used due to the greater certainty of the empirical vertical plasma drifts. The plasma drifts produced by the Horizontal Wind Model (HWM) in a coupled ionosphere‐electric field model for geomagnetically quiet and moderate solar conditions are compared against empirical models of equatorial plasma drifts for the Peruvian sector. The HWM generates reasonable sunset prereversal enhancement of the vertical drift in all but May, June, July, and August when no prereversal enhancement exists in the empirical results. The daytime vertical drifts are deficient during all seasons. A solar diurnal and semi‐diurnal tidal forcing are required in the E region (100–150 km) to bring the HWM into better agreement as a dynamo driver for the daytime electric fields associated with the broad Solar Quiet current system.more » « less
-
Abstract The prereversal enhancement (PRE) is a brief surge in upward plasma velocity in the evening equatorial ionosphere and a driver of equatorial spread‐F. This study reports the first PRE climatology from Ionospheric Connection Explorer (ICON) data, exhibiting seasonal and longitudinal variability that is qualitatively consistent with results from two previous satellite missions. Previous missions, however, lacked the neutral wind observations to characterize their impact on the PRE. To quantitatively assess wind impacts, numerical experiments are performed with a standalone dynamo solver using winds from the TIEGCM‐ICON, which is driven from below by observed tides. To quantify the impact of solar/magnetic geometry, such as the alignment between the solar terminator and the magnetic meridian, the model was first driven with seasonally and longitudinally averaged winds (which includes seasonally averaged zonal‐mean winds and migrating tides). This reproduces the observed PRE variability with a correlation of 0.44. Incorporating longitudinally and seasonally varying wind patterns improves the correlation to 0.68. This suggests that climatological wind variability is an important driver of PRE variability, but future work is needed to account for the missing variability. Potential missing drivers include conductivity variability near the terminator and mesoscale wind features such as the solar terminator wave.more » « less
-
Abstract A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011,https://doi.org/10.1029/2011GL050016). The Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional‐scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (~475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at ~200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from ~120 to ~150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine‐structure auroral precipitation and subgrid electric field variability in the modeling of storm‐time ionosphere‐thermosphere responses.more » « less
An official website of the United States government
