Abstract Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought‐induced saltwater intrusion on CH4and N2O emissions remain unclear. In this study, a process‐driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification‐DeComposition (TFW‐DNDC), was applied to examine the responses of CH4and N2O emissions to episodic drought‐induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4and N2O emission responsiveness to coastal droughts and drought‐induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4and N2O emissions and suggests that simple linkages to salinity may not always be relevant, as non‐linear relationships dominated our simulations. Along the Savannah River, N2O emissions in the moderate‐oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4emission decreased. For the Waccamaw River, emissions of both CH4and N2O in the moderate‐oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate‐oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4and N2O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought‐induced seawater intrusion.
more »
« less
Millennial‐Scale Changes in Terrestrial and Marine Nitrous Oxide Emissions at the Onset and Termination of Marine Isotope Stage 4
Abstract Ice core measurements of the concentration and stable isotopic composition of atmospheric nitrous oxide (N2O) 74,000–59,000 years ago constrain marine and terrestrial emissions. The data include two major Dansgaard‐Oeschger (D‐O) events and the N2O decrease during global cooling at the Marine Isotope Stage (MIS) 5a‐4 transition. The N2O increase associated with D‐O 19 (~73–71.5 ka) was driven by equal contributions from marine and terrestrial emissions. The N2O decrease during the transition into MIS 4 (~71.5–67.5 ka) was caused by gradual reductions of similar magnitude in both marine and terrestrial sources. A 50 ppb increase in N2O concentration at the end of MIS 4 was caused by gradual increases in marine and terrestrial emissions between ~64 and 61 ka, followed by an abrupt increase in marine emissions at the onset of D‐O 16/17 (59.5 ka). This suggests that the importance of marine versus terrestrial emissions in controlling millennial‐scale N2O fluctuations varied in time.
more »
« less
- Award ID(s):
- 1903681
- PAR ID:
- 10362082
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The last glacial period is characterized by abrupt climate oscillations, also known as Dansgaard-Oeschger (D-O) cycles. However, D-O cycles remain poorly documented in climate proxy records covering the penultimate glacial period. Here we present highly resolved and precisely dated speleothem time series from Sofular Cave in northern Türkiye to provide clear evidence for D-O cycles during Marine Isotope Stage (MIS) 6 as well as MIS 2-4. D-O cycles are most clearly expressed in the Sofular carbon isotope time series, which correlate inversely with regional sea surface temperature (SST) records from the Black Sea. The pacing of D-O cycles is almost twice as long during MIS 6 compared to MIS 2-4, and could be related to a weaker Atlantic Meridional Overturning Circulation (AMOC) and a different mean climate during MIS 6 compared to MIS 2-4, leading most likely to a higher threshold for the occurrence of D-O cycles.more » « less
-
Many estuaries experience eutrophication, deoxygenation and warming, with potential impacts on greenhouse gas emissions. However, the response of N2O production to these changes is poorly constrained. Here we applied nitrogen isotope tracer incubations to measure N2O production under experimentally manipulated changes in oxygen and temperature in the Chesapeake Bay—the largest estuary in the United States. N2O production more than doubled from nitrification and increased exponentially from denitrification when O2was decreased from >20 to <5 micromolar. Raising temperature from 15° to 35°C increased N2O production 2- to 10-fold. Developing a biogeochemical model by incorporating these responses, N2O emissions from the Chesapeake Bay were estimated to decrease from 157 to 140 Mg N year−1from 1986 to 2016 and further to 124 Mg N year−1in 2050. Although deoxygenation and warming stimulate N2O production, the modeled decrease in N2O emissions, attributed to decreased nutrient inputs, indicates the importance of nutrient management in curbing greenhouse gas emissions, potentially mitigating climate change.more » « less
-
Summary Microbial enzymes often occur as distinct variants that share the same substrate but differ in substrate affinity, sensitivity to environmental conditions, or phylogenetic ancestry. Determining where variants occur in the environment helps identify thresholds that constrain microbial cycling of key chemicals, including the greenhouse gas nitrous oxide (N2O). To understand the enzymatic basis of N2O cycling in the ocean, we mined metagenomes to characterize genes encoding bacterial nitrous oxide reductase (NosZ) catalyzing N2O reduction to N2. We examined data sets from diverse biomes but focused primarily on those from oxygen minimum zones where N2O levels are often elevated. With few exceptions, marinenosZdata sets were dominated by ‘atypical’ clade II gene variants. AtypicalnosZhas been associated with low oxygen, enhanced N2O affinity, and organisms lacking enzymes for complete denitrification, i.e., non‐denitrifiers. AtypicalnosZ often occurred in metagenome‐assembled genomes (MAGs) with nitrate or nitrite respiration genes, although MAGs with genes for complete denitrification were rare. We identified atypicalnosZ in several taxa not previously associated with N2O consumption, in addition to known N2O‐associated groups. The data suggest that marine environments generally select for high N2O‐scavenging ability across diverse taxa and have implications for how N2O concentration may affect N2O removal rates.more » « less
-
Abstract The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1in the 1900s to 0.51 Tg N year−1in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types.more » « less
An official website of the United States government
