This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model.
more »
« less
Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands
Abstract Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought‐induced saltwater intrusion on CH4and N2O emissions remain unclear. In this study, a process‐driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification‐DeComposition (TFW‐DNDC), was applied to examine the responses of CH4and N2O emissions to episodic drought‐induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4and N2O emission responsiveness to coastal droughts and drought‐induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4and N2O emissions and suggests that simple linkages to salinity may not always be relevant, as non‐linear relationships dominated our simulations. Along the Savannah River, N2O emissions in the moderate‐oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4emission decreased. For the Waccamaw River, emissions of both CH4and N2O in the moderate‐oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate‐oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4and N2O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought‐induced seawater intrusion.
more »
« less
- Award ID(s):
- 1754603
- PAR ID:
- 10492144
- Publisher / Repository:
- The Ecological Society of America
- Date Published:
- Journal Name:
- Ecological Applications
- Volume:
- 33
- Issue:
- 5
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Situated in the transitional zone between non-tidal forests upstream and tidal freshwater marshes downstream, tidal freshwater forests (TFF) occupy a unique and increasingly precarious habitat due to the threat of saltwater intrusion and sea level rise. Salinization causes tree mortality and forest-to-marsh transition, which reduces biodiversity and carbon sequestration. The Altamaha River is the longest undammed river on the United States East Coast and has extensive TFF, but there have been only limited field studies examining TFF along the entire gradient of salinity and flooding. We surveyed thirty-eight forest plots on the Altamaha River along a gradient of tidal influence, and measured tree species composition, diameter, and height. Hierarchical clustering and indicator species analysis were used to identify TFF communities. The relationship of these communities to elevation and river distance was assessed using non-metric multidimensional scaling (NMDS). We identified six significantly different forest communities: Oak/Hornbeam, Water Tupelo, Bald Cypress/Tupelo, Pine, Swamp Tupelo, and Bald Cypress. Both elevation and river distance were significantly correlated with plot species composition (p = 0.001). Plots at the downstream extent of our study area had lower stem density, basal area, and species diversity than those further upstream, suggesting saltwater intrusion. This study demonstrates the importance of and need for thorough and robust analyses of tidal freshwater forest composition to improve prediction of TFF response to sea level rise.more » « less
-
Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories.more » « less
-
Abstract Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).more » « less
-
Abstract Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger ‘chain reactions,’ where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to ‘fast’ and ‘slow’ chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl−, SO42−, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation–reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production.more » « less
An official website of the United States government

