skip to main content


Title: Holocene Hydroclimatic Reorganizations in Northwest Canada Inferred From Lacustrine Carbonate Oxygen Isotopes
Abstract

Sub‐centennial oxygen (δ18O) isotopes of ostracod and authigenic calcite from Squanga Lake provides evidence of hydroclimatic extremes and a series of post‐glacial climate system reorganizations for the interior region of northwest Canada. Authigenic calciteδ18O values range from −16‰ to −21‰ and are presently similar to modern lake water and annual precipitation values. Ostracodδ18O record near identical trends with calcite, offset by +1.7 ± 0.6‰. At 11 ka BP (kaBP = thousands of years before 1950), higherδ18O values reflect decreased precipitation−evaporation (P−E) balance from residual ice sheet influences on moisture availability. A trend to lowerδ18O values until ∼8 ka BP reflects a shift to wetter conditions, and reorganization of atmospheric circulation. The last millennium and modern era are relatively dry, though not as dry as the early Holocene extreme. North Pacific climate dynamics remained an important driver of P−E balance in northwest Canada throughout the Holocene.

 
more » « less
Award ID(s):
1841400
NSF-PAR ID:
10362094
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
16
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Major shifts in hydroclimate have been documented during the last deglacial period and the Holocene in south‐central Alaska. Rare freshwater calcium carbonate (marl) deposits in lakes on the Kenai Peninsula can be used to reconstruct past changes in hydroclimate, including the influence of groundwater inflow to lakes. Here, the postglacial sediment sequence from groundwater‐fed Kelly Lake (60.514°N, 150.374°W) was analyzed for multiple proxies including isotopes of carbon and oxygen in marl calcite (δ13Cmarland δ18Omarl), and isotopes of carbon (ẟ13COM) and abundances of C and N in organic matter. Bulk sediment analyses include organic matter and calcium carbonate (CaCO3) contents, visual stratigraphy and sediment flux. These analyses extend those of a previous paleoenvironmental reconstruction from Kelly Lake, which focused on sedimentary diatom oxygen isotopes and mass balance modeling over the past 10 000 years. Here, we show that Kelly Lake was deglaciated prior to 14.6 ka, and that by 14.0 ka marl dominated the sediments, with CaCO3precipitation probably driven by groundwater input and mediated by shallow‐water charophytes. Marl accumulation decreased as organic and clastic inputs increased between ~12.2 and 11.5 ka. This shift, together with an increase in both δ13Cmarland δ18Omarlvalues and a decrease in CaCO3content, indicates an increase in the influence of meteoric water on the hydrologic budget under wet conditions, possibly driven by a strengthened Aleutian Low atmospheric pressure cell. A shift to lower δ13Cmarland δ18Omarlvalues at ~11.5 ka is interpreted as an increase in the proportion of groundwater relative to meteoric water in the lake. Beginning around 9 ka, the proportion of meteoric water input continued to increase, the surrounding coniferous forest was established, and by 8 ka, CaCO3accumulation ended. Our results elucidate the environmental conditions under which marl was deposited during the Lateglacial and early Holocene in this part of Alaska, and demonstrate how a variety of synoptic‐ and local‐scale climatic variables can converge to influence sedimentation in a groundwater‐fed lake.

     
    more » « less
  2. Abstract

    The climate of the southwestern North America has experienced profound changes between wet and dry phases over the past 200 Kyr. To better constrain the timing, magnitude, and paleoenvironmental impacts of these changes in hydroclimate, we conducted a multiproxy biomarker study from samples collected from a new 77 m sediment core (SLAPP‐SRLS17) drilled in Searles Lake, California. Here, we use biomarkers and pollen to reconstruct vegetation, lake conditions, and climate. We find that δD values of long chainn‐alkanes are dominated by glacial to interglacial changes that match nearby Devils Hole calcite δ18O variability, suggesting both archives predominantly reflect precipitation isotopes. However, precipitation isotopes do not simply covary with evidence for wet‐dry changes in vegetation and lake conditions, indicating a partial disconnect between large scale atmospheric circulation tracked by precipitation isotopes and landscape moisture availability. Increased crenarchaeol production and decreased evidence for methane cycling reveal a 10 Kyr interval of a fresh, productive, and well‐mixed lake during Termination II, corroborating evidence for a paleolake highstand from shorelines and spillover deposits in downstream Panamint Basin and Death Valley during the end of the penultimate (Tahoe) glacial (140–130 ka). At the same time brGDGTs yield the lowest temperature estimates (mean months above freezing = 9°C ± 3°C) of the 200 Kyr record. These limnological conditions are not replicated elsewhere in the 200 Kyr record, suggesting that the Heinrich stadial 11 highstand was wetter than the last glacial maximum and Heinrich 1 (18–15 ka).

     
    more » « less
  3. null (Ed.)
    We present new mineralogical and geochemical data from modern sediments in the Chew Bahir basin and catchment, Ethiopia. Our goal is to better understand the role of modern sedimentary processes in chemical proxy formation in the Chew Bahir paleolake, a newly investigated paleoclimatic archive, to provide environmental context for human evolution and dispersal. Modern sediment outside the currently dry playa lake floor have higher SiO 2 and Al 2 O 3 (50–70 wt.%) content compared to mudflat samples. On average, mudflat sediment samples are enriched in elements such as Mg, Ca, Ce, Nd, and Na, indicating possible enrichment during chemical weathering (e.g., clay formation). Thermodynamic modeling of evaporating water in upstream Lake Chamo is shown to produce an authigenic mineral assemblage of calcite, analcime, and Mg-enriched authigenic illitic clay minerals, consistent with the prevalence of environments of enhanced evaporative concentration in the Chew Bahir basin. A comparison with samples from the sediment cores of Chew Bahir based on whole-rock MgO/Al 2 O 3 , Ba/Sr and authigenic clay mineral δ 18 O values shows the following: modern sediments deposited in the saline mudflats of the Chew Bahir dried out lake bed resemble paleosediments deposited during dry periods, such as during times of the Last Glacial Maximum and Younger Dryas stadial. Sediments from modern detrital upstream sources are more similar to sediments deposited during wetter periods, such as the early Holocene African Humid Period. 
    more » « less
  4. ABSTRACT

    A submillennial‐resolution record of lake water oxygen isotope composition (δ18O) from chironomid head capsules is presented from Burial Lake, northwest Alaska. The record spans the Last Glacial Maximum (LGM; ~20–16k cal abp) to the present and shows a series of large lake δ18O shifts (~5‰). Relatively low δ18O values occurred during a period covering the LGM, when the lake was a shallow, closed‐basin pond. Higher values characterize deglaciation (~16–11.5k cal abp) when the lake was still closed but lake levels were higher. A rapid decline between ~11 and 10.5k cal abpindicates that lake levels rose to overflowing. Lake δ18O values are interpreted to reflect the combined effects of changes in lake hydrology, growing season temperature and meteoric source water as well as large‐scale environmental changes impacting this site, including opening of the Bering Strait and shifts in atmospheric circulation patterns related to ice‐sheet dynamics. The results indicate significant shifts in precipitation minus evaporation across the late Pleistocene to early Holocene transition, which are consistent with temporal patterns of vegetation change and paludification. This study provides new perspectives on the paleohydrology of eastern Beringia concomitant with human migration and major turnover in megafaunal assemblages.

     
    more » « less
  5. Abstract

    To date Indian summer monsoon (ISM) dynamics have been assessed by changes in stalagmite δ18O. However, stalagmite δ18O is influenced by multiple environmental factors (e.g., atmospheric moisture transport, rainfall amount at the study site, and ISM seasonality), precluding simple and clear reconstructions of rainfall amount or variability. This study aims to disentangle these environmental factors by combining δ18O, δ44Ca, and elemental data from a stalagmite covering Termination II and the last interglacial from Mawmluh Cave, NE India, to produce a semiquantitative reconstruction of past ISM rainfall. We interpret δ18O as a mixed signal of rainfall source dynamics and rainfall amount and coupled δ44Ca and X/Ca ratios as indicators of local infiltration rate and prior calcite precipitation in the karst zone. The wettest conditions in our studied interval (135 and 100 kyrs BP; BP = before present, with the present being 1950 CE) occurred during Marine Isotope Stage 5e. Our multiproxy data set suggests a likely change in seasonal distribution of Marine Isotope Stage 5e rainfall compared to the Holocene; the wet season was longer with higher‐than‐modern dry season rainfall. Using the last interglacial as an analogue for future anthropogenic warming, our data suggest a more erratic ISM behavior in a warmer world.

     
    more » « less