skip to main content


Title: Greater aridity increases the magnitude of urban nighttime vegetation-derived air cooling
Abstract

High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.

 
more » « less
Award ID(s):
1924288
NSF-PAR ID:
10362108
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 034011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As a consequence of the warm and humid climate of tropical coastal regions, there is high energy demand year-round due to air conditioning to maintain indoor comfort levels. Past and current practices are focused on mitigating peak cooling demands by improving heat balances by using efficient building envelope technologies, passive systems, and demand side management strategies. In this study, we explore city-scale solar photovoltaic (PV) planning integrating information on climate, building parameters and energy models, and electrical system performance, with added benefits for the tropical coastal city of San Juan, Puerto Rico. Energy balance on normal roof, flush-mounted PV roof, and tilted PV roof are used to determine PV power generation, air, and roof surface temperatures. To scale up the application to the whole city, we use the urbanized version of the Weather Research and Forecast (WRF) model with the building effect parameterization (BEP) and the building energy model (BEM). The city topology is represented by the World Urban Database Access Portal Tool (WUDAPT), local climate zones (LCZs) for urban landscapes. The modeled peak roof temperature is maximum for normal roof conditions and minimum when inclined PV is installed on a roof. These trends are followed by the building air conditioning (AC) demand from urbanized WRF, maximum for normal roof and minimum for inclined roof-mounted PV. The net result is a reduced daytime Urban Heat Island (UHI) for horizontal and inclined PV roof and increased nighttime UHI for the horizontal PV roof as compared with the normal roof. The ratio between coincident AC demand and PV production for the entire metropolitan region is further analyzed reaching 20% for compact low rise and open low rise buildings due to adequate roof area but reaches almost 100% for compact high rise and compact midrise buildings class, respectively. 
    more » « less
  2. Abstract In this work, we investigate the effect of areawide building retrofitting on summertime, street-level outdoor temperatures in an urban district in Berlin, Germany. We perform two building-resolving, weeklong large-eddy simulations: one with nonretrofitted buildings and the other with retrofitted buildings in the entire domain to meet today’s energy efficiency standards. The comparison of the two simulations reveals that the mean outdoor temperatures are higher with retrofitted buildings during daytime conditions. This behavior is caused by the much smaller inertia of the outermost roof/wall layer in the retrofitting case, which is thermally decoupled from the inner roof/wall layers by an insulation layer. As a result, the outermost layer heats up more rigorously during the daytime, leading to increased sensible heat fluxes into the atmosphere. During the nighttime, the outermost layer’s temperature drops down faster, resulting in cooling of the atmosphere. However, as the simulation progresses, the cooling effect becomes smaller and the warming effect becomes larger. After 1 week, we find the mean temperatures to be 4 K higher during the daytime while the cooling effects become negligible. Significance Statement Building retrofitting is taking place in Europe and other continents as a measure to reduce energy consumption. The change in the building envelope directly influences the urban atmosphere. Our study reveals that areawide retrofitting in a German city district can have negative effects on the outdoor microclimate in summer by causing higher air temperatures. 
    more » « less
  3. Abstract The two-resistance mechanism (TRM) attribution method, which was designed to analyze the urban–rural contrast of temperature, is improved to study the urban–rural contrast of heat stress. The improved method can be applied to diagnosing any heat stress index that is a function of temperature and humidity. As an example, in this study we use it to analyze the summertime urban–rural contrast of simplified wet bulb globe temperature (SWBGT) simulated by the Geophysical Fluid Dynamics Laboratory land model coupled with an urban canopy model. We find that the urban–rural contrast of SWBGT is primarily caused by the lack of evapotranspiration in urban areas during the daytime and the release of heat storage during the nighttime, with the urban–rural differences in aerodynamic features playing either positive or negative roles depending on the background climate. Compared to the magnitude of the urban–rural contrast of temperature, the magnitude of the urban–rural contrast of SWBGT is damped due to the moisture deficits in urban areas. We further find that the urban–rural contrast of 2-m air temperature/SWBGT is fundamentally different from that of canopy air temperature/SWBGT. Turbulent mixing in the surface layer leads to much smaller urban–rural contrasts of 2-m air temperature/SWBGT than their canopy air counterparts. Significance Statement Heat leads to serious public health concerns, but urban and rural areas have different levels of heat stress. Our study explains the magnitude and pattern of the simulated urban–rural contrast in heat stress at the global scale and improves an attribution method to quantify which biophysical processes are mostly responsible for the simulated urban–rural contrast in heat stress. We highlight two well-known causes of higher heat stress in cities: the lack of evapotranspiration and the stronger release of heat storage. Meanwhile, we draw attention to the vegetation types in rural areas, which determine the urban–rural difference in surface roughness and significantly affect the urban–rural difference in heat stress. Last, we find the urban–rural contrasts of 2-m air temperature/SWBGT are largely reduced relative to their canopy air counterparts due to the turbulent mixing effect. 
    more » « less
  4. Abstract

    Humans’ essential ability to combat heat stress through sweat-based evaporative cooling is modulated by ambient air temperature and humidity, making humid heat a critical factor for human health. In this study, we relate the occurrence of extreme humid heat in two focus regions to two related modes of intraseasonal climate variability: the Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). In the Persian Gulf and South Asia during the May–June and July–August seasons, wet-bulb temperatures of 28°C are found to be almost twice as likely during certain oscillation phases than in others. Variations in moisture are found, to varying degrees, to be an important ingredient in anomalously high wet-bulb temperatures in all three areas studied, influenced by distinct local circulation anomalies. In the Persian Gulf, weakening of climatological winds associated with the intraseasonal oscillation’s propagating center of convection allows for anomalous onshore advection of humid air. Anomalously high wet-bulb temperatures in the northwestern region of South Asia are closely aligned with positive specific humidity anomalies associated with the convectively active phase of the oscillation. On the southeastern coast of India, high wet-bulb temperatures are associated with convectively inactive phases of the intraseasonal oscillation, suggesting that they may be driven by increased surface insolation and reduced evaporative cooling during monsoon breaks. Our results aid in building a foundation for subseasonal predictions of extreme humid heat in regions where it is highly impactful.

    Significance Statement

    Understanding when and why extreme humid heat occurs is essential for informing public health efforts protecting against heat stress. This analysis works to improve our understanding of humid heat variability in two at-risk regions, the Persian Gulf and South Asia. By exploring how subseasonal oscillations affect daily extreme events, this analysis helps bridge the prediction gap between weather and climate. We find that extreme humid heat is more than twice as likely during specific phases of these oscillations than in others. Extremes depend to different extents upon combinations of above-average temperature and humidity. This new knowledge of the regional drivers of humid heat variability is important to better prepare for the increasingly widespread health and socioeconomic impacts of heat stress.

     
    more » « less
  5. Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban–rural surface temperature differences (ΔTs) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban–biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations ofΔTs. If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduceΔTsduring summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.

     
    more » « less