Abstract Different heat mitigation technologies have been developed to improve the thermal environment in cities. However, the regional impacts of such technologies, especially in the context of a tropical city, remain unclear. The deployment of heat mitigation technologies at city‐scale can change the radiation balance, advective flow, and energy balance between urban areas and the overlying atmosphere. We used the mesoscale Weather Research and Forecasting model coupled with a physically based single‐layer urban canopy model to assess the impacts of five different heat mitigation technologies on surface energy balance, standard surface meteorological fields, and planetary boundary layer (PBL) dynamics for premonsoon typical hot summer days over a tropical coastal city in the month of April in 2018, 2019, and 2020. Results indicate that the regional impacts of cool materials (CMs), super‐cool broadband radiative coolers, green roofs (GRs), vegetation fraction change, and a combination of CMs and GRs (i.e., “Cool city (CC)”) on the lower atmosphere are different at diurnal scale. Results showed that super‐cool materials have the maximum potential of ambient temperature reduction of 1.6°C during peak hour (14:00 LT) compared to other technologies in the study. During the daytime hours, the PBL height was considerably lower than the reference scenario with no implementation of strategies by 700 m for super‐cool materials and 500 m for both CMs and CC cases; however, the green roofing system underwent nominal changes over the urban area. During the nighttime hours, the PBL height increased by CMs and the CC strategies compared to the reference scenario, but minimal changes were evident for super‐cool materials. The changes of temperature on the vertical profile of the heat mitigation implemented city reveal a stable PBL over the urban domain and a reduction of the vertical mixing associated with a pollution dome. This would lead to crossover phenomena above the PBL due to the decrease in vertical wind speed. Therefore, assessing the coupled regional impact of urban heat mitigation over the lower atmosphere at city‐scale is urgent for sustainable urban planning.
more »
« less
A scaling law for predicting urban trees canopy cooling efficiency
Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat.
more »
« less
- Award ID(s):
- 2022036
- PAR ID:
- 10621584
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 46
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.more » « less
-
The benefits of the urban tree and tree canopy (UTC) are increasingly crucial in addressing urban sustainability. Yet, increasingly evident from earlier research is the distributional inequities of UTC and active efforts to expand tree plantings. Less is known about the dynamics of UTC loss over time and location. This study aims to understand the dynamics of UTC change, especially canopy loss, and to investigate the drivers of the loss. This study draws on a high–resolution dataset of an urban canopy in Portland, Oregon, USA, assessing changes in UTC from 2014 to 2020. By integrating demographic, biophysical, and policy data with UTC information, we use a spatial autoregressive model to identify the drivers of UTC loss. The results reveal an unexpected spatial distribution of UTC change: less gain in the neighborhoods with the least UTC, and greater loss in the neighborhoods with moderate UTC. This study identifies four primary drivers of UTC loss: socioeconomic characteristics, urban form, activities on trees, and residential status. Factors such as population density, race, and income have an impact on canopy loss, as well as the building footprint and the number of multifamily housing units; residential statuses, such as the proportion of owner-occupied housing and residential stability, impact canopy loss.more » « less
-
null (Ed.)Abstract Cities increasingly recognize the importance of shade to reduce heat stress and adopt urban forestry plans with ambitious canopy goals. Yet, the implementation of tree and shade plans often faces maintenance, water use, and infrastructure challenges. Understanding the performance of natural and non-natural shade is critical to support active shade management in the built environment. We conducted hourly transects in Tempe, Arizona with the mobile human-biometeorological station MaRTy on hot summer days to quantify the efficacy of various shade types. We sampled sun-exposed reference locations and shade types grouped by urban form, lightweight/engineered shade, and tree species over multiple ground surfaces. We investigated shade performance during the day, at peak incoming solar, peak air temperature, and after sunset using three thermal metrics: the difference between a shaded and sun-exposed location in air temperature ( ΔT a ), surface temperature ( ΔT s ), and mean radiant temperature ( ΔT MRT ). ΔT a did not vary significantly between shade groups, but ΔT MRT spanned a 50°C range across observations. At daytime, shade from urban form most effectively reduced T s and T MRT , followed by trees and lightweight structures. Shade from urban form performed differently with changing orientation. Tree shade performance varied widely; native and palm trees were least effective, while non-native trees were most effective. All shade types exhibited heat retention (positive ΔT MRT ) after sunset. Based on the observations, we developed characteristic shade performance curves that will inform the City of Tempe’s design guidelines towards using “the right shade in the right place” and form the basis for the development of microclimate zones (MCSz).more » « less
-
Abstract Water smart cities are increasing their use of irrigation and misting to cope with extreme heat and drought. This is being enabled by widespread use of rainwater tanks, stormwater capture and storage systems, and recycled sewage wastewater to irrigate street trees as well as private and public green spaces. These alternative water resources provide new options for cities to better withstand and function under extreme summer heatwave conditions with little or no impact on drinking water supplies. Small‐scale approaches to evaporatively cool urban animals, vegetation habitat, and people are showing initial success. However, ongoing testing and modeling are needed to understand the impacts of scaling up these interventions and to evaluate their cost‐effectiveness. We describe current innovations in irrigation of Australian cities to help policy development in other countries and cities experiencing similar climates with episodic summer heatwaves.more » « less
An official website of the United States government

