We analyse new multifilter Hubble Space Telescope (HST) photometry of the normal Type Ia supernova (SN Ia) 2011fe out to ≈2400 d after maximum light, the latest observations to date of a SN Ia. We model the pseudo-bolometric light curve with a simple radioactive decay model and find energy input from both 57Co and 55Fe are needed to power the late-time luminosity. This is the first detection of 55Fe in a SN Ia. We consider potential sources of contamination such as a surviving companion star or delaying the deposition time-scale for 56Co positrons but these scenarios are ultimately disfavored. The relative isotopic abundances place direct constraints on the burning conditions experienced by the white dwarf (WD). Additionally, we place a conservative upper limit of <10−3 M⊙ on the synthesized mass of 44Ti. Only two classes of explosion models are currently consistent with all observations of SN 2011fe: (1) the delayed detonation of a low-ρc, near-MCh (1.2–1.3 M⊙) WD, or (2) a sub-MCh (1.0–1.1 M⊙) WD experiencing a thin-shell double detonation.
We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a
- Publication Date:
- NSF-PAR ID:
- 10362164
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 925
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. L12
- ISSN:
- 2041-8205
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be aWD(double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion (Branch et al. 1995; Nomoto et al. 2003; Wang & Han 2012). Light curves and spectra of the explosion look similar because a ’stellar amnesia’ (H¨oflich et al. 2006). Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds (Webbink 1984; Isern et al. 2011), b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards (Nomoto 1982; Hoeflich & Khokhlov 1996; Kromer et al. 2010); c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems (Whelan & Iben 1973; Piersanti et al. 2003). Simulations of the explosionsmore »
-
Abstract Helium star–carbon-oxygen white dwarf (CO WD) binaries are potential single-degenerate progenitor systems of thermonuclear supernovae. Revisiting a set of binary evolution calculations using the stellar evolution code MESA , we refine our previous predictions about which systems can lead to a thermonuclear supernova and then characterize the properties of the helium star donor at the time of explosion. We convert these model properties to near-UV/optical magnitudes assuming a blackbody spectrum and support this approach using a matched stellar atmosphere model. These models will be valuable to compare with pre-explosion imaging for future supernovae, though we emphasize the observational difficulty of detecting extremely blue companions. The pre-explosion source detected in association with SN 2012Z has been interpreted as a helium star binary containing an initially ultra-massive WD in a multiday orbit. However, extending our binary models to initial CO WD masses of up to 1.2 M ⊙ , we find that these systems undergo off-center carbon ignitions and thus are not expected to produce thermonuclear supernovae. This tension suggests that, if SN 2012Z is associated with a helium star–WD binary, then the pre-explosion optical light from the system must be significantly modified by the binary environment and/or the WD doesmore »
-
Abstract A thermonuclear explosion triggered by a He-shell detonation on a carbon–oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i -band peak absolute magnitude is derived to be around −17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i λ 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700–10500 Å is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models.
-
Abstract White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63
M ⊙and temperatures <12,000 K and provide suggested inflation factors for age uncertainties formore »