skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Almost All Carbon/Oxygen White Dwarfs Can Host Double Detonations
Abstract Double detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in unstably mass-transferring double WD binaries have become one of the leading contenders to explain most Type Ia supernovae. However, past theoretical studies of the explosion process have assumed relatively ad hoc initial conditions for the helium shells in which the double detonations begin. In this work, we construct realistic C/O WDs to use as the starting points for multidimensional double detonation simulations. We supplement these with simplified one-dimensional detonation calculations to gain a physical understanding of the conditions under which shell detonations can propagate successfully. We find that C/O WDs ≲1.0M, which make up the majority of C/O WDs, are born with structures that can support double detonations. More massive C/O WDs require ∼10−3Mof accretion before detonations can successfully propagate in their shells, but such accretion may be common in the double WD binaries that host massive WDs. Our findings strongly suggest that if the direct impact accretion stream reaches high enough temperatures and densities during mass transfer from one WD to another, the accreting WD will undergo a double detonation. Furthermore, if the companion is also a C/O WD ≲1.0M, it will undergo its own double detonation when impacted by the ejecta from the first explosion. Exceptions to this outcome may explain the newly discovered class of hypervelocity supernova survivors.  more » « less
Award ID(s):
2307442
PAR ID:
10552554
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
975
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 127
Size(s):
Article No. 127
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Study of the double-detonation Type Ia supernova scenario, in which a helium-shell detonation triggers a carbon-core detonation in a sub-Chandrasekhar-mass white dwarf (WD), has experienced a resurgence in the past decade. New evolutionary scenarios and a better understanding of which nuclear reactions are essential have allowed for successful explosions in WDs with much thinner helium shells than in the original, decades-old incarnation of the double-detonation scenario. In this paper, we present the first suite of light curves and spectra from multidimensional radiative transfer calculations of thin-shell double-detonation models, exploring a range of WD and helium-shell masses. We find broad agreement with the observed light curves and spectra of nonpeculiar Type Ia supernovae, from subluminous to overluminous subtypes, providing evidence that double detonations of sub-Chandrasekhar-mass WDs produce the bulk of observed Type Ia supernovae. Some discrepancies in spectral velocities and colors persist, but these may be brought into agreement by future calculations that include more accurate initial conditions and radiation transport physics. 
    more » « less
  2. Abstract White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63Mand temperatures <12,000 K and provide suggested inflation factors for age uncertainties for higher-mass WDs. Overall, WDs return reliable stellar ages, but we detail cases where the total ages are least reliable, especially for WDs <0.63M
    more » « less
  3. Abstract The double detonation model is one of the prevalent explosion mechanisms of Type Ia supernovae (SNe Ia) wherein an outer helium shell detonation triggers a core detonation in the white dwarf (WD). The dynamically driven double degenerate double detonation (D6) is the double detonation of the more massive WD in a binary WD system where the localized impact of the mass transfer stream from the companion sets off the initial helium shell detonation. To have high numerical resolution and control over the stream parameters, we have implemented a study of the local interaction of the stream with the WD surface in 2D. In cases with lower base density of the shell, the stream's impact can cause surface detonation soon after first impact. With higher base densities, after the stream hits the surface, hot material flows around the star and interacts with the incoming stream to produce a denser and narrower impact. Our results therefore show that (1) a directly impacting stream for both a relatively high resolution and for a range of stream parameters can produce a surface detonation, (2) thinner helium shells ignite more promptly via impact, doing so sooner, and (3) there are lower limits on ignition in both shell density and incoming stream speed with lower limits on density being well below those shown by other work to be required for normal appearing SN Ia. This supports stream ignition and therefore the D6scenario, as a viable mechanism for normal SNe Ia. 
    more » « less
  4. Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028Mwith a massive white dwarf companion,MWD= 0.725 ± 0.026M. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92Mwith a thick helium layer of 0.17M. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions. 
    more » « less
  5. Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population. 
    more » « less