Abstract Fluorophores with high quantum yields, extended maximum emission wavelengths, and long photoluminescence (PL) lifetimes are still lacking for sensing and imaging applications in the second near‐infrared window (NIR‐II). In this work, a series of rod‐shaped icosahedral nanoclusters with bright NIR‐II PL, quantum yields up to≈8%, and a peak emission wavelength of 1520 nm are reported. It is found that the bright NIR‐II emission arises from a previously ignored state with near‐zero oscillator strength in the ground‐state geometry and the central Au atom in the nanoclusters suppresses the non‐radiative transitions and enhances the overall PL efficiency. In addition, a framework is developed to analyze and relate the underlying transitions for the absorptions and the NIR‐II emissions in the Au nanoclusters based on the experimentally defined absorption coefficient. Overall, this work not only shows good performance of the rod‐shaped icosahedral series of Au nanoclusters as NIR‐II fluorophores, but also unravels the fundamental electronic transitions and atomic‐level structure‐property relations for the enhancement of the NIR‐II PL in gold nanoclusters. The framework developed here also provides a simple method to analyze the underlying electronic transitions in metal nanoclusters.
more »
« less
Near-infrared photoluminescence of Portland cement
Abstract Portland cement emits bright near-infrared photoluminescence that can be excited by light wavelengths ranging from at least 500–1000 nm. The emission has a peak wavelength near 1140 nm and a width of approximately 30 nm. Its source is suggested to be small particles of silicon associated with calcium silicate phases. The luminescence peak wavelength appears independent of the cement hydration state, aggregates, and mechanical strain but increases weakly with increasing temperature. It varies slightly with the type of cement, suggesting a new non-contact method for identifying cement formulations. After a thin opaque coating is applied to a cement or concrete surface, subsequent formation of microcracks exposes the substrate’s near-infrared emission, revealing the fracture locations, pattern, and progression. This damage would escape detection in normal imaging inspections. Near-infrared luminescence imaging may therefore provide a new tool for non-destructive testing of cement-based structures.
more »
« less
- Award ID(s):
- 1803066
- PAR ID:
- 10362217
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Efficient broadband near‐infrared (NIR) emitting materials with an emission peak centered above 830 nm are crucial for smart NIR spectroscopy‐based technologies. However, the development of these materials remains a significant challenge. Herein, a series of design rules rooted in computational methods and empirical crystal‐chemical analysis is applied to identify a new Cr3+‐substituted phosphor. The compound GaTaO4:Cr3+emerged from this study is based on the material's high structural rigidity, suitable electronic environment, and relatively weak electron–phonon coupling. Irradiating this new phosphor with 460 nm blue light generates a broadband NIR emission (λem,max = 840 nm) covering the 700–1100 nm region of the electromagnetic spectrum with a full width at half maximum of 140 nm. The phase has a high internal quantum yield of 91% and excellent thermal stability, maintaining 85% of the room temperature emission intensity at 100 °C. Fabricating a phosphor‐converted light‐emitting diode device shows that the new compound generates an intense NIR emission (178 mW at 500 mA) with photoelectric efficiency of 6%. This work not only provides a new material that has the potential for next‐generation high‐power NIR applications but also highlights a set of design rules capable of developing highly efficient long‐wavelength broadband NIR materials.more » « less
-
Abstract X‐ray radiation exhibits diminished scattering and a greater penetration depth in tissue relative to the visible spectrum and has spawned new medical imaging techniques that exploit X‐ray luminescence of nanoparticles. The majority of the nanoparticles finding applications in this field incorporate metals with high atomic numbers and pose potential toxicity effects. Here, a general strategy for the preparation of a fully organic X‐ray radioluminescent colloidal platform that can be tailored to emit anywhere in the visible spectrum through a judicious choice in donor/acceptor pairing and multiple sequential Förster resonance energy transfers (FRETs) is presented. This is demonstrated with three different types of ≈100 nm particles that are doped with anthracene as the scintillating molecule to “pump” subsequent FRET dye pairs that result in emissions from ≈400 nm out past 700 nm. The particles can be self‐assembled in crystalline colloidal arrays, and the radioluminescence of the particles can be dynamically tuned by coupling the observed rejection wavelength with the dyes' emission.more » « less
-
Five new near-infrared (NIR) phosphorescent bis-cyclometalated iridium( iii ) complexes, partnering highly conjugated cyclometalating ligands with quinoline-derived ancillary ligands, have been developed. These complexes have peak NIR luminescence wavelengths from 711 to 729 nm, with photoluminescence quantum yields ranging from 0.042 to 0.36.more » « less
-
In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000–1,700 nm) and extended SWIR (ESWIR, 1,700–2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300–1,700 nm and emission onsets of 1,800–2,200 nm. We characterize the fluorophores photophysically (both steady-state and time- resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.more » « less
An official website of the United States government
