skip to main content

Title: Dynamic Emission Tuning of X‐ray Radioluminescent Crystalline Colloidal Arrays: Coupling the Optical Stop Band with Sequential Förster Resonance Energy Transfers

X‐ray radiation exhibits diminished scattering and a greater penetration depth in tissue relative to the visible spectrum and has spawned new medical imaging techniques that exploit X‐ray luminescence of nanoparticles. The majority of the nanoparticles finding applications in this field incorporate metals with high atomic numbers and pose potential toxicity effects. Here, a general strategy for the preparation of a fully organic X‐ray radioluminescent colloidal platform that can be tailored to emit anywhere in the visible spectrum through a judicious choice in donor/acceptor pairing and multiple sequential Förster resonance energy transfers (FRETs) is presented. This is demonstrated with three different types of ≈100 nm particles that are doped with anthracene as the scintillating molecule to “pump” subsequent FRET dye pairs that result in emissions from ≈400 nm out past 700 nm. The particles can be self‐assembled in crystalline colloidal arrays, and the radioluminescence of the particles can be dynamically tuned by coupling the observed rejection wavelength with the dyes' emission.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mn and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result. 
    more » « less
  2. Abstract

    Plasmonic nanoparticles (NPs) adsorbing onto helical bacteria can lead to formation of NP helicoids with micron scale pitch. Associated chiroptical effects can be utilized as bioanalytical tool for bacterial detection and better understanding of the spectral behavior of helical self‐assembled structures with different scales. Here, we report that enantiomerically pure helices with micron scale of chirality can be assembled onCampylobacter jejuni, a helical bacterium known for severe stomach infections. These organisms have right‐handed helical shapes with a pitch of 1–2 microns and can serve as versatile templates for a variety of NPs. The bacteria itself shows no observable rotatory activity in the visible, red, and near‐IR ranges of electromagnetic spectrum. The bacterial dispersion acquires chiroptical activity at 500–750 nm upon plasmonic functionalization with Au NPs. Finite‐difference time‐domain simulations confirmed the attribution of the chiroptical activity to the helical assembly of gold nanoparticles. The position of the circular dichroism peaks observed for these chiral structures overlaps with those obtained before for Au NPs and their constructs with molecular and nanoscale chirality. This work provides an experimental and computational pathway to utilize chiroplasmonic particles assembled on bacteria for bioanalytical purposes.

    more » « less
  3. Abstract

    Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation.

    more » « less
  4. null (Ed.)
    Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal–ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31 P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal–ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles. 
    more » « less
  5. Abstract

    To produce multi-dopant ferrite nanoparticles, the ‘Extended LaMer’ and seed-mediated growth techniques were combined by first utilizing traditional thermal decomposition of metal acetylacetonates to produce seed particles, followed by a continuous injection of metal oleate precursors to increase the volume of the seed particles. With the choice of precursors for the seeding and dripping stage, we successfully synthesized particles with manganese precursor for seeding and cobalt precursor for dripping (Mn0.18Co1.04Fe1.78O4, 17.6 ± 3.3 nm), and particles with cobalt precursors for seeding and manganese precursors for dripping (Mn0.31Co0.74Fe1.95O4, 19.0 ± 1.9 nm). Combining transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and vibrating sample magnetometry, we conclude that the seed-mediated drip method is a viable method to produce multi-dopant ferrite nanoparticles, and the size of the particles was mostly determined by the seeding stage, while the magnetic properties were more affected by the dripping stage.

    more » « less