Future changes in climate variable exhibit prominent impact on flood magnitudes, crop yields, and freshwater withdrawal. Researchers typically ignore the large degree of uncertainty translated from climate projections to the estimated climate change magnitudes while applying pre‐processing approaches on climate change projections. General Circulation Models (GCM) exhibit substantial uncertainty in projecting future changes in the seasonal temperature, which is evaluated by estimating the shift in either the mean or variance. Bias between the observed changes (1950–1999) and GCM simulated changes vary across models, climate regions, seasons, and under emission scenarios. The simplest approach to reduce model structural uncertainty, equal weighting of GCMs, does not consider superiority of one or multiple GCMs compared to the rest. The current study adopts a performance‐based model combination approach that has shown efficiency in streamflow and weather forecasting, and GCM precipitation simulation. The optimal model combination approach has been modified to combine multi‐model climate change information, while yielding the spatial correlation in climate change information within a geographic region. The optimal model combination approach, along with a simple bias‐correction, is applied on 10 GCMs over nine climate regions across the coterminous United States (CONUS). We found that the optimal combination exhibits lower RMSE values as compared to the equal combination. Correlations between the model combined projections under optimal combination and the observed changes are strong and positive (>0.5). Future (2000–49) model combined projections exhibit an increase in the mean seasonal temperature by 2°C for winter and by 1°C for summer over almost all climate regions.
Projecting species’ responses to future climate conditions is critical for anticipating conservation challenges and informing proactive policy and management decisions. However, best practices for choosing climate models for projection ensembles are currently in flux. We compared including a maximum number of models against trimming ensembles based on model validation. This was done within the emerging practice of ensemble building using an increasingly larger number of global climate models (GCMs) for future projections. We used recently reported estimates on primary drivers of population fluctuations for the migratory monarch butterfly (
- NSF-PAR ID:
- 10362233
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning.
-
Abstract Natural climate variability, captured through multiple initial condition ensembles, may be comparable to the variability caused by knowledge gaps in future emissions trajectories and in the physical science basis, especially at adaptation-relevant scales and projection horizons. The relations to chaos theory, including sensitivity to initial conditions, have caused the resulting variability in projections to be viewed as the irreducible uncertainty component of climate. The multiplier effect of ensembles from emissions-trajectories, multiple-models and initial-conditions contribute to the challenge. We show that ignoring this variability results in underestimation of precipitation extremes return periods leading to maladaptation. However, we show that concatenating initial-condition ensembles results in reduction of hydroclimate uncertainty. We show how this reduced uncertainty in precipitation extremes percolates to adaptation-relevant-Depth-Duration Frequency curves. Hence, generation of additional initial condition ensembles therefore no longer needs to be viewed as an uncertainty explosion problem but as a solution that can lead to uncertainty reduction in assessment of extremes.
-
Abstract Probabilistic projections of baseline (with no additional mitigation policies) future carbon emissions are important for sound climate risk assessments. Deep uncertainty surrounds many drivers of projected emissions. Here, we use a simple integrated assessment model, calibrated to century-scale data and expert assessments of baseline emissions, global economic growth, and population growth, to make probabilistic projections of carbon emissions through 2100. Under a variety of assumptions about fossil fuel resource levels and decarbonization rates, our projections largely agree with several emissions projections under current policy conditions. Our global sensitivity analysis identifies several key economic drivers of uncertainty in future emissions and shows important higher-level interactions between economic and technological parameters, while population uncertainties are less important. Our analysis also projects relatively low global economic growth rates over the remainder of the century. This illustrates the importance of additional research into economic growth dynamics for climate risk assessment, especially if pledged and future climate mitigation policies are weakened or have delayed implementations. These results showcase the power of using a simple, transparent, and calibrated model. While the simple model structure has several advantages, it also creates caveats for our results which are related to important areas for further research.
-
Abstract Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect.
To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs.
Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions.
Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.