Abstract Global climate model (GCM) projections of future climate are uncertain largely due to a persistent spread in cloud feedback. This is despite efforts to reduce this model uncertainty through a variety of emergent constraints (ECs); with several studies suggesting an important role for present‐day biases in clouds. Here, we use three generations of GCMs to assess the value of climatological cloud metrics for constraining uncertainty in cloud feedback. We find that shortwave cloud radiative properties across the Southern Hemisphere extratropics are most robustly correlated with tropical cloud feedback (TCF). Using this relationship in conjunction with observations, we produce an EC that yields a TCF value of 0.52 ± 0.34 W/m2/K, which equates to a 34% reduction in uncertainty. Thus, we show that climatological cloud properties can be used to reduce uncertainty in how clouds will respond to future warming.
more »
« less
A Novel Emergent Constraint Approach for Refining Regional Climate Model Projections of Peak Flow Timing
Abstract Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning.
more »
« less
- Award ID(s):
- 2303610
- PAR ID:
- 10514782
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 12
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Projecting species’ responses to future climate conditions is critical for anticipating conservation challenges and informing proactive policy and management decisions. However, best practices for choosing climate models for projection ensembles are currently in flux. We compared including a maximum number of models against trimming ensembles based on model validation. This was done within the emerging practice of ensemble building using an increasingly larger number of global climate models (GCMs) for future projections. We used recently reported estimates on primary drivers of population fluctuations for the migratory monarch butterfly (Danaus plexippus) to examine how multiple sources of uncertainty impact population forecasts for a well‐studied species. We compared mean spring temperature and precipitation observed in Texas from 1980 to 2005 with predictions from 16 GCMs to determine which of the models performed best. We then built tailored climate projections accumulating both temperature (in the form of growing degree days) and rainfall using both “complete” (all 16) and “trimmed” (best‐performing) ensembles based on three emission scenarios. We built the tailored projections of spring growing conditions to assess the range of possible climate outcomes and their potential impacts on monarch development. Results were similar when mean predictions were compared between trimmed and complete ensembles. However, when daily projections and uncertainty were accumulated over the entire spring season, we showed substantial differences between ensembles in terms of possible ecological outcomes. Ensembles that used all 16 GCMs included so much uncertainty that projections for future spring conditions ranged from being too cold to too hot for monarch development. GCMs based on best‐performing metrics provided much more useful information, projecting higher spring temperatures for developing monarch larvae in the future which could lead to larger summer populations but also suggesting risk from excessive heat. When there is a strong basis for identifying mechanistic drivers of population dynamics, our results support using a smaller subset of validated GCMs to bracket a range of the most defensible future environmental conditions tailored to the species of interest. Yet understating uncertainty remains a risk, and we recommend clearly articulating the rationale and consequences of selecting GCMs for long‐term projections.more » « less
-
Abstract Climate change projections provided by global climate models (GCM) are generally too coarse for local and regional applications. Local and regional climate change impact studies therefore use downscaled datasets. While there are studies that evaluate downscaling methodologies, there is no study comparing the downscaled datasets that are actually distributed and used in climate change impact studies, and there is no guidance for selecting a published downscaled dataset. We compare five widely used statistically downscaled climate change projection datasets that cover the conterminous USA (CONUS): ClimateNA, LOCA, MACAv2-LIVNEH, MACAv2-METDATA, and NEX-DCP30. All of the datasets are derived from CMIP5 GCMs and are publicly distributed. The five datasets generally have good agreement across CONUS for Representative Concentration Pathways (RCP) 4.5 and 8.5, although the agreement among the datasets vary greatly depending on the GCM, and there are many localized areas of sharp disagreements. Areas of higher dataset disagreement emerge over time, and their importance relative to differences among GCMs is comparable between RCP4.5 and RCP8.5. Dataset disagreement displays distinct regional patterns, with greater disagreement in △Tmax and △Tmin in the interior West and in the North, and disagreement in △P in California and the Southeast. LOCA and ClimateNA are often the outlier dataset, while the seasonal timing of ClimateNA is somewhat shifted from the others. To easily identify regional study areas with high disagreement, we generated maps of dataset disagreement aggregated to states, ecoregions, watersheds, and forests. Climate change assessment studies can use the maps to evaluate and select one or more downscaled datasets for their study area.more » « less
-
Abstract The earth's hydroclimate is continuing to change, and the corresponding impacts on water resource space‐time distribution need to be understood to mitigate their socioeconomic consequences. A variety of ecosystem services, transport processes, and human activities are synced with thetimingof peak annual runoff. To understand the influence of changing hydroclimate on peak runoff dates across the continental United States, we downscaled outputs of 10 Global Circulation Models for different future scenarios. Our results quantify robust spatial patterns of both negative (up to 3–5 weeks) and positive (up to 2–4 weeks) shifts in the dates of peak annual runoff occurrence by the end of this century. In snowmelt‐dominated areas, annual maxima are projected to shift to earlier dates due to the corresponding changes in snow accumulation timing. For regions in which the occurrence of springtime extreme soil wetness shifts to later time, we find that peak annual runoff is also projected to be delayed. These patterns of runoff timing change tend to be more pronounced for projections of higher greenhouse concentration in the future.more » « less
-
Abstract This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.more » « less
An official website of the United States government
