skip to main content


Title: Structural and spectral properties of Galactic plane variable radio sources
ABSTRACT

In the time domain, the radio sky in particular along the Galactic plane direction may vary significantly because of various energetic activities associated with stars, stellar, and supermassive black holes. Multi-epoch Very Large Array surveys of the Galactic plane at 5.0 GHz enabled the finding of a catalogue of 39 variable radio sources in the flux density range 1–70 mJy. To probe their radio structures and spectra, we observed 17 sources with the very-long-baseline interferometric (VLBI) imaging technique and collected additional multifrequency data from the literature. We detected all of the sources at 5 GHz with the Westerbork Synthesis Radio Telescope, but only G23.6644–0.0372 with the European VLBI Network (EVN). Together with its decadal variability and multifrequency radio spectrum, we interpret it as an extragalactic peaked-spectrum source with a size of ≲10 pc. The remaining sources were resolved out by the long baselines of the EVN because of either strong scatter broadening at the Galactic latitude < 1° or intrinsically very extended structures on centi-arcsec scales. According to their spectral and structural properties, we find that the sample has a diverse nature. We notice two young H ii regions and spot a radio star and a candidate planetary nebula. The rest of the sources are very likely associated with radio active galactic nuclei (AGNs). Two of them also display arcsec-scale faint jet activity. The sample study indicates that AGNs are common place even among variable radio sources in the Galactic plane.

 
more » « less
NSF-PAR ID:
10362248
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 280-294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the results of an Atacama Large Millimeter/submillimeter Array survey to identify 183 GHz H2O maser emission from active galactic nuclei (AGNs) already known to host 22 GHz megamaser systems. Out of 20 sources observed, we detect significant 183 GHz maser emission from 13; this survey thus increases the number of AGN known to host (sub)millimeter megamasers by a factor of 5. We find that the 183 GHz emission is systematically fainter than the 22 GHz emission from the same targets, with typical flux densities being roughly an order of magnitude lower at 183 GHz than at 22 GHz. However, the isotropic luminosities of the detected 183 GHz sources are comparable to their 22 GHz values. For two of our sources—ESO 269-G012 and the Circinus galaxy—we detect rich 183 GHz spectral structure containing multiple line complexes. The 183 GHz spectrum of ESO 269-G012 exhibits the triple-peaked structure characteristic of an edge-on AGN disk system. The Circinus galaxy contains the strongest 183 GHz emission detected in our sample, peaking at a flux density of nearly 5 Jy. The high signal-to-noise ratios achieved by these strong lines enable a coarse mapping of the 183 GHz maser system, in which the masers appear to be distributed similarly to those seen in VLBI maps of the 22 GHz system in the same galaxy and may be tracing the circumnuclear accretion disk at larger orbital radii than the 22 GHz masers. This newly identified population of AGN disk megamasers presents a motivation for developing VLBI capabilities at 183 GHz.

     
    more » « less
  2. ABSTRACT

    Studies of high-redshift radio galaxies can shed light on the activity of active galactic nuclei (AGNs) in massive elliptical galaxies, and on the assembly and evolution of galaxy clusters in the Universe. J1606+3124 has been tentatively identified as a radio galaxy at a redshift of 4.56, at an era of one-tenth of the current age of the Universe. Very long baseline interferometry (VLBI) images show a compact triple structure with a size of 68 pc. The radio properties of J1606+3124, including the edge-brightening morphology, peaked GHz radio spectrum, slow variability, and low jet speed, consistently indicate that it is a compact symmetric object (CSO). The radio source size and expansion rate of the hotspots suggest that J1606+3124 is a young (kinematic age of ∼3600 yr) radio source. Infrared observations reveal a gas- and dust-rich host galaxy environment, which may hinder the growth of the jet; however, the ultra-high jet power of J1606+3124 gives it an excellent chance to grow into a large-scale double-lobe radio galaxy. If its redshift and galaxy classification can be confirmed by further optical spectroscopic observations, J1606+3124 will be the highest redshift CSO galaxy known to date.

     
    more » « less
  3. Abstract

    Mrk 1018 is a nearby changing-look active galactic nucleus (AGN) that has oscillated between spectral Type 1.9 and Type 1 over a period of 40 yr. Recently, a recoiling supermassive black hole (rSMBH) scenario has been proposed to explain the spectral and flux variability observed in this AGN. Detections of rSMBHs are important for understanding the processes by which SMBH binaries merge and how rSMBHs influence their galactic environment through feedback mechanisms. However, conclusive identification of any rSMBHs has remained elusive to date. In this paper, we present an analysis of 6.5 yr of multifrequency Very Long Baseline Array monitoring of Mrk 1018. We find that the radio emission is compact down to 2.4 pc, and it displays flux density and spectral variability over the length of our campaign, typical of a flat-spectrum radio core. We observe proper motion in RA of the radio core at −36.4 ± 8.6μas yr−1(4.2σ), or 0.10c± 0.02cat the redshift of Mrk 1018. No significant proper motion is found in DEC (31.3 ± 25.1μas yr−1). We discuss possible physical mechanisms driving the proper motion, including an rSMBH. We conclude that the apparent velocity we observe of the VLBI radio core is too high to reconcile with theoretical predictions of rSMBH velocities and that the proper motion is most likely dominated by an unresolved, outflowing jet component. Future observations may yet reveal the true nature of Mrk 1018. However, our observations are not able to confirm it as a true rSMBH.

     
    more » « less
  4. ABSTRACT

    We use the Very Long Baseline Array to conduct high precision astrometry of a sample of 33 compact, flat spectrum, variable radio sources in the direction of the Galactic plane (Becker et al. 2010). Although Becker et al. (2010) ruled out a few potential scenarios for the origin of the radio emission, the study could not rule out that these sources were black hole X-ray binaries (BHXBs). Most known BHXBs are first detected by X-ray or optical emission when they go into an outburst, leaving the larger quiescent BHXB population undiscovered. In this paper, we attempt to identify any Galactic sources amongst the Becker et al. (2010) sample by measuring their proper motions as a first step to finding quiescent BHXB candidates. Amongst the 33 targets, we could measure the proper motion of six sources. We find that G32.7193-0.6477 is a Galactic source and are able to constrain the parallax of this source with a 3σ significance. We found three strong Galactic candidates, G32.5898-0.4468, G29.1075-0.1546, and G31.1494-0.1727, based purely on their proper motions, and suggest that G29.1075-0.1546 is also likely Galactic. We detected two resolved targets for multiple epochs (G30.1038+0.3984 and G29.7161-0.3178). We find six targets are only detected in one epoch and have an extended structure. We cross-match our VLBA detections with the currently available optical, infrared, and X-ray surveys, and did not find any potential matches. We did not detect 19 targets in any VLBA epochs and suggest that this could be due to limited uv-coverage, drastic radio variability, or faint, extended nature of the sources.

     
    more » « less
  5. Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds. 
    more » « less