The mantle transition zone (MTZ) of Earth is demarcated by solid‐to‐solid phase changes of the mineral olivine that produce seismic discontinuities at 410 and 660‐km depths. Mineral physics experiments predict that wadsleyite can have strong single‐crystal anisotropy at the pressure and temperature conditions of the MTZ. Thus, significant seismic anisotropy is possible in the upper MTZ where lattice‐preferred orientation of wadsleyite is produced by mantle flow. Here, we use a body wave method, SS precursors, to study the topography change and seismic anisotropy near the MTZ discontinuities. We stack the data to explore the azimuthal dependence of travel‐times and amplitudes of SS precursors and constrain the azimuthal anisotropy in the MTZ. Beneath the central Pacific, we find evidence for ~4% anisotropy with a SE fast direction in the upper mantle and no significant anisotropy in the MTZ. In subduction zones, we observe ~4% anisotropy with a trench‐parallel fast direction in the upper mantle and ~3% anisotropy with a trench‐perpendicular fast direction in the MTZ. The transition of fast directions indicates that the lattice‐preferred orientation of wadsleyite induced by MTZ flow is organized separately from the flow in the upper mantle. Global azimuthal stacking reveals ~1% azimuthal anisotropy in the upper mantle but negligible anisotropy (<1%) in the MTZ. Finally, we correct for the upper mantle and MTZ anisotropy structures to obtain a new MTZ topography model. The anisotropy correction produces
The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $\ge $3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ.
more » « less- Award ID(s):
- 1853662
- NSF-PAR ID:
- 10362352
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 229
- Issue:
- 2
- ISSN:
- 0956-540X
- Page Range / eLocation ID:
- p. 1212-1231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ± 3 km difference and therefore has minor overall effects on global MTZ topography. -
SUMMARY The detailed structure near the 410-km discontinuity provides key constraints of the dynamic interactions between the upper mantle and the lower mantle through the mantle transition zone (MTZ) via mass and heat exchange. Meanwhile, the temperature of the subducting slab, which can be derived from its fast wave speed perturbation, is critical for understanding the mantle dynamics in subduction zones where the slab enters the MTZ. Multipathing, i.e. triplicated, body waves that bottom near the MTZ carry rich information of the 410-km discontinuity structure and can be used to constrain the discontinuity depth and radial variations of wave speeds across it. In this study, we systematically analysed the trade-off between model parameters in triplication studies using synthetic examples. Specifically, we illustrated the necessity of using array-normalized amplitude. Two 1-D depth profiles of the wave speed below the Tatar Strait of Russia in the Kuril subduction zone are obtained. We have observed triplications due to both the 410-km discontinuity and the slab upper surface. And, seismic structures for these two interfaces are simultaneously inverted. Our derived 410-km discontinuity depths for the northern and southern regions are at 420$\pm $15 and 425$\pm $15 km, respectively, with no observable uplift. The slab upper surface is inverted to be located about 50–70 km below the 410-km discontinuity. This location is between the depths of the 1 and 2 per cent P-wave speed perturbation contours of a regional 3-D full-waveform inversion (FWI) model, but we found twice the wave speed perturbation amplitude. A wave speed increase of 3.9–4.6 per cent within the slab, compared to 2.0–2.4 per cent from the 3-D FWI model, is necessary to fit the waveforms with the shortest period of 2 s, indicating that high-frequency waves are required to accurately resolve the detailed structures near the MTZ.more » « less
-
null (Ed.)SUMMARY The method of ScS reverberation migration is based on a ‘common reflection point’ analysis of multiple ScS reflections in the mantle transition zone (MTZ). We examine whether ray-theoretical traveltimes, slownesses and reflection points are sufficiently accurate for estimating the thickness H of the MTZ, defined by the distance between the 410- and 660-km phase transitions. First, we analyse ScS reverberations generated by 35 earthquakes and recorded at hundreds of seismic stations from the combined Arrays in China, Hi-NET in Japan and the Global Seismic Network. This analysis suggests that H varies by about 30 km and therefore that dynamic processes have modified the large-scale structure of the MTZ in eastern Asia and the western Pacific region. Second, we apply the same procedure to spectral-element synthetics for PREM and two 3-D models. One 3-D model incorporates degree-20 topography on the 410 and 660 discontinuities, otherwise preserving the PREM velocity model. The other model incorporates the degree-20 velocity heterogeneity of S20RTS and leaves the 410 and 660 flat. To optimize reflection point coverage, our synthetics were computed assuming a homogeneous grid of stations using 16 events, four of which are fictional. The resolved image using PREM synthetics resembles the PREM structure and indicates that the migration approach is correct. However, ScS reverberations are not as strongly sensitive to H as predicted ray-theoretically because the migration of synthetics for a model with degree-20 topography on the 410 and 660: H varies by less than 5 km in the resolved image but 10 km in the original model. In addition, the relatively strong influence of whole-mantle shear-velocity heterogeneity is evident from the migration of synthetics for the S20RTS velocity model and the broad sensitivity kernels of ScS reverberations at a period of 15 s. A ray-theoretical approach to modelling long-period ScS traveltimes appears inaccurate, at least for continental-scale regions with relatively sparse earthquake coverage. Additional modelling and comparisons with SS precursor and receiver function results should rely on 3-D waveform simulations for a variety of structures and ultimately the implementation of full wave theory.more » « less
-
SUMMARY Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.
-
SUMMARY We report finite-frequency imaging of the global 410- and 660-km discontinuities using boundary sensitivity kernels for traveltime measurements made on SS precursors. The application of finite-frequency sensitivity kernels overcomes resolution limits in previous studies associated with large Fresnel zones of SS precursors and their interferences with other seismic phases. In this study, we calculate the finite-frequency sensitivities of SS waves and their precursors based on a single-scattering (Born) approximation in the framework of travelling-wave mode summation. The global discontinuity surface is parametrized using a set of triangular gridpoints with a lateral spacing of about 4°, and we solve the linear finite-frequency inverse problem (2-D tomography) based on singular value decomposition (SVD). The new global models start to show a number of features that were absent (or weak) in ray-theoretical back-projection models at spherical harmonic degree l > 6. The thickness of the mantle transition zone correlates well with wave speed perturbations at a global scale, suggesting dominantly thermal origins for the lateral variations in the mantle transition zone. However, an anticorrelation between the topography of the 410-km discontinuity and wave speed variations is not observed at a global scale. Overall, the mantle transition zone is about 2–3 km thicker beneath the continents than in oceanic regions. The new models of the 410- and 660-km discontinuities show better agreement with the finite-frequency study by Lawrence & Shearer than other global models obtained using SS precursors. However, significant discrepancies between the two models exist in the Pacific Ocean and major subduction zones at spherical harmonic degree >6. This indicates the importance of accounting for wave interactions in the calculations of sensitivity kernels as well as the use of finite-frequency sensitivities in data quality control.more » « less