skip to main content

Title: Constraining the 410-km discontinuity and slab structure in the Kuril subduction zone with triplication waveforms
SUMMARY The detailed structure near the 410-km discontinuity provides key constraints of the dynamic interactions between the upper mantle and the lower mantle through the mantle transition zone (MTZ) via mass and heat exchange. Meanwhile, the temperature of the subducting slab, which can be derived from its fast wave speed perturbation, is critical for understanding the mantle dynamics in subduction zones where the slab enters the MTZ. Multipathing, i.e. triplicated, body waves that bottom near the MTZ carry rich information of the 410-km discontinuity structure and can be used to constrain the discontinuity depth and radial variations of wave speeds across it. In this study, we systematically analysed the trade-off between model parameters in triplication studies using synthetic examples. Specifically, we illustrated the necessity of using array-normalized amplitude. Two 1-D depth profiles of the wave speed below the Tatar Strait of Russia in the Kuril subduction zone are obtained. We have observed triplications due to both the 410-km discontinuity and the slab upper surface. And, seismic structures for these two interfaces are simultaneously inverted. Our derived 410-km discontinuity depths for the northern and southern regions are at 420$\pm $15 and 425$\pm $15 km, respectively, with no observable uplift. The slab upper surface is inverted to more » be located about 50–70 km below the 410-km discontinuity. This location is between the depths of the 1 and 2 per cent P-wave speed perturbation contours of a regional 3-D full-waveform inversion (FWI) model, but we found twice the wave speed perturbation amplitude. A wave speed increase of 3.9–4.6 per cent within the slab, compared to 2.0–2.4 per cent from the 3-D FWI model, is necessary to fit the waveforms with the shortest period of 2 s, indicating that high-frequency waves are required to accurately resolve the detailed structures near the MTZ. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1802247
Publication Date:
NSF-PAR ID:
10324350
Journal Name:
Geophysical Journal International
Volume:
228
Issue:
2
Page Range or eLocation-ID:
729 to 743
ISSN:
0956-540X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $\ge $3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materialsmore »induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ.

    « less
  2. SUMMARY

    Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-kmmore »and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.

    « less
  3. SUMMARY

    Despite progress in tomographic imaging of Earth's interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to themore »geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of upper-mantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.

    « less
  4. SUMMARY We report finite-frequency imaging of the global 410- and 660-km discontinuities using boundary sensitivity kernels for traveltime measurements made on SS precursors. The application of finite-frequency sensitivity kernels overcomes resolution limits in previous studies associated with large Fresnel zones of SS precursors and their interferences with other seismic phases. In this study, we calculate the finite-frequency sensitivities of SS waves and their precursors based on a single-scattering (Born) approximation in the framework of travelling-wave mode summation. The global discontinuity surface is parametrized using a set of triangular gridpoints with a lateral spacing of about 4°, and we solve the linear finite-frequency inverse problem (2-D tomography) based on singular value decomposition (SVD). The new global models start to show a number of features that were absent (or weak) in ray-theoretical back-projection models at spherical harmonic degree l > 6. The thickness of the mantle transition zone correlates well with wave speed perturbations at a global scale, suggesting dominantly thermal origins for the lateral variations in the mantle transition zone. However, an anticorrelation between the topography of the 410-km discontinuity and wave speed variations is not observed at a global scale. Overall, the mantle transition zone is about 2–3 km thicker beneathmore »the continents than in oceanic regions. The new models of the 410- and 660-km discontinuities show better agreement with the finite-frequency study by Lawrence & Shearer than other global models obtained using SS precursors. However, significant discrepancies between the two models exist in the Pacific Ocean and major subduction zones at spherical harmonic degree >6. This indicates the importance of accounting for wave interactions in the calculations of sensitivity kernels as well as the use of finite-frequency sensitivities in data quality control.« less
  5. Abstract

    The upper boundary of the mantle transition zone, known as the “410-km discontinuity”, is attributed to the phase transformation of the mineral olivine (α) to wadsleyite (β olivine). Here we present observations of triplicated P-waves from dense seismic arrays that constrain the structure of the subducting Pacific slab near the 410-km discontinuity beneath the northern Sea of Japan. Our analysis of P-wave travel times and waveforms at periods as short as 2 s indicates the presence of an ultra-low-velocity layer within the cold slab, with a P-wave velocity that is at least ≈20% lower than in the ambient mantle and an apparent thickness of ≈20 km along the wave path. This ultra-low-velocity layer could contain unstable material (e.g., poirierite) with reduced grain size where diffusionless transformations are favored.