skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DARPP‐32 distinguishes a subset of adult‐born neurons in zebra finch HVC
Abstract Adult male zebra finches (Taeniopygia guttata) continually incorporate adult‐born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity‐dependent immediate early genes (e.g.,zenkandc‐fos) following song production, suggesting that these neurons are active during song production. Half of these adult‐born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth‐dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP‐32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP‐32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP‐32‐neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.  more » « less
Award ID(s):
1828327
PAR ID:
10362353
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
530
Issue:
5
ISSN:
0021-9967
Page Range / eLocation ID:
p. 792-803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drosophilalarvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larvalDrosophilafor their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning inDrosophilalarvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larvalDrosophila. 
    more » « less
  2. Abstract Vocal learning in songbirds is mediated by cortico‐basal ganglia circuits that govern diverse functions during different stages of development. We investigated developmental changes in axonal projections to and from motor cortical regions that underlie learned vocal behavior in juvenile zebra finches (Taeniopygia guttata). Neurons in LMAN‐core project to RA, a motor cortical region that drives vocal output; these RA‐projecting neurons send a transient collateral projection to AId, a region adjacent to RA, during early vocal development. Both RA and AId project to a region of dorsal thalamus (DLM), which forms a feedback pathway to cortico‐basal ganglia circuitry. These projections provide pathways conveying efference copy and a means by which information about vocal motor output could be reintegrated into cortico‐basal ganglia circuitry, potentially aiding in the refinement of juvenile vocalizations during learning. We used tract‐tracing techniques to label the projections of LMAN‐core to AId and of RA to DLM in juvenile songbirds. The volume and density of terminal label in the LMAN‐core→AId projection declined substantially during early stages of sensorimotor learning. In contrast, the RA→DLM projection showed no developmental change. The retraction of LMAN‐core→AId axon collaterals indicates a loss of efference copy to AId and suggests that projections that are present only during early stages of sensorimotor learning mediate unique, temporally restricted processes of goal‐directed learning. Conversely, the persistence of the RA→DLM projection may serve to convey motor information forward to the thalamus to facilitate song production during both learning and maintenance of vocalizations. 
    more » « less
  3. The dark-eyed junco (Junco hyemalis) has experienced rapid phenotypic diversification within the last 18,000 years, resulting in several subspecies that reside in partially overlapping regions across North America. These subspecies have distinct plumage and morphology. If members of a subspecies disproportionately mate with one another, we would expect genetic differences to accumulate between the subspecies. In parallel, their learned songs could also accumulate changes. If song is used by individuals to recognize members of their own subspecies during mate selection, which would prevent the production of less fit hybrid offspring between subspecies, then song differences might co-localize with subspecies boundaries. Here, we quantify 10 song features to explore subspecies-level song variation using song recordings from community-science databases. We build a machine learning classifier to measure how accurately the subspecies’ songs can be distinguished from one another. Here, we show that songs of dark-eyed junco subspecies exhibit significant song-feature differences. However, these differences do not necessarily lead to distinguishability between subspecies. Notably, we find that subspecies pairs with adjacent ranges that do not hybridize have much more distinguishable songs, and also more evidence for genetic differentiation, than pairs that are known to hybridize. Thus, song distinguishability appears to have predictive power about which subspecies will hybridize, suggesting that song might play a role in reinforcing certain subspecies boundaries more than others. Finally, we analyze subspecies-level song differences alongside available genetic data and geographic coordinates to characterize the current evolutionary landscape of the dark-eyed junco subspecies complex. We observe geographic signal in the song and genetic data, indicating that individuals who share a range are more likely to share song characteristics and be genetically similar. This study illuminates the existence of subspecies-level song differences in the dark-eyed junco and provides further clarity on the role learned song plays in reinforcing reproductive boundaries between dark-eyed junco subspecies. 
    more » « less
  4. Song learning in zebra finches (Taeniopygia guttata) requires exposure to the song of a tutor, resulting in an auditory memory. This memory is the foundation for later sensorimotor learning, resulting in the production of a copy of the tutor's song. The cortical premotor nucleus HVC (proper name) is necessary for auditory and sensorimotor learning as well as the eventual production of adult song. We recently discovered that the intrinsic physiology of HVC neurons changes across stages of song learning, but are those changes the result of learning or are they experience-independent developmental changes? To test the role of auditory experience in driving intrinsic changes, patch-clamp experiments were performed comparing HVC neurons in juvenile birds with varying amounts of tutor exposure. The intrinsic physiology of HVC neurons changed as a function of tutor exposure. Counterintuitively, tutor deprivation resulted in juvenile HVC neurons showing an adult-like phenotype not present in tutor-exposed juveniles. Biophysical models were developed to predict which ion channels were modulated by experience. The models indicate that tutor exposure transiently suppressed the Ih and T-type Ca2+ currents in HVC neurons that target the basal ganglia, whereas tutor exposure increased the resting membrane potential and decreased the spike amplitude in HVC neurons that drive singing. Our findings suggest that intrinsic plasticity may be part of the mechanism for auditory learning in the HVC. More broadly, models of learning and memory should consider intrinsic plasticity as a possible mechanism by which the nervous system encodes the lasting effects of experience. 
    more » « less
  5. It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene–related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA. 
    more » « less