skip to main content


Title: Experimental and Theoretical Study on the Substitution Patterns in Lithium Germanides: The Case of Li 15 Ge 4 vs Li 14 ZnGe 4
Abstract

A new ternary lithium zinc germanide, Li13.83Zn1.17(2)Ge4, was synthesized by a high‐temperature solid state reaction of the respective elements. The crystal structure was determined by single‐crystal X‐ray diffraction methods. The new phase crystallizes in the body‐centered cubic space groupI3d(no. 220) with unit cell parameter of 10.695(1) Å. The crystal structure refinements show that the parent Li15Ge4structure is stabilized as Li15−xZnxGe4(x≈1) via random substitution of Li atoms by the one‐electron‐richer atoms of the element Zn, by virtue of which the number of valence electrons increases, leading to a more electronically stable system. The substitution effects in the parent Li15Ge4structure were investigated through both theory and experiment, which confirm that the Zn atoms in this structure prefer to occupy only one of the two available crystallographic sites for Li. The preferred substitution pattern established from experimental results is supported by DFT electronic structure calculations, which also explore the subtleties of the chemical bonding and the electronic properties of the title compounds.

 
more » « less
Award ID(s):
2004579
NSF-PAR ID:
10362440
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2022
Issue:
4
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new compound NaCd4Sb3(Rm,a=4.7013(1) Å,c=35.325(1), Å, Z=3,T=100 K) featuring the RbCd4As3structure type has been discovered in the Na−Cd−Sb system, in addition to the previously reported NaCdSb phase. NaCd4Sb3and NaCdSb were herein synthesized using sodium hydride as the source of sodium. The hydride method allows for targeted sample composition, improved precursor mixing, and an overall quicker synthesis time when compared to traditional methods using Na metal as a precursor. The NaCd4Sb3structure was determined from single‐crystal X‐ray diffraction and contained the splitting of a Cd site not seen in previous isostructural phases. NaCd4Sb3decomposes into NaCdSb plus melt at 766 K, as determined viain‐situhigh‐temperature PXRD. The electronic structure calculations predict the NaCd4Sb3phase to be semi‐metallic, which compliments the measured thermoelectric property data, indicative of ap‐type semi‐metallic material. The crystal structure, elemental analysis, thermal properties, and electronic structure are herein discussed in further detail.

     
    more » « less
  2. Abstract

    An extended series of rare‐earth metal calcium germanides have been synthesized and structurally characterized. The compounds have the general formulaRE5−xCaxGe4(1.5<x<3.6;RE=rare‐earth metal; Ce, Nd, Sm, Tb−Lu) and their structures have been established from single‐crystal X‐ray diffraction methods. They crystallize with the Gd5Si4‐type in the orthorhombic space groupPnma(No. 62;Z=4; Pearson symboloP36), where the germanium atoms are interconnected into two kinds of Ge2‐dimers, formally [Ge2]6−. These studies show that Ca can be successfully incorporated into the hostRE5Ge4structure, whereby trivalent rare‐earth metal atoms can be substituted by divalent calcium atoms. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms and cubes, centered by either Ge or Ca atoms. On one of the metal sites, the substitution is preferential and in 9 out of the 10 refined structures, the Wyckoff site 4cis found almost exclusively occupied by Ca. On the other two metal sites the substitution patterns appear to be governed by the mismatch between the size of theRE3+and Ca2+ions. This work further demonstrates the ability for the Gd5Si4structure type to accommodate the substitution of a non‐magnetic element while maintaining the global structural integrity.

     
    more » « less
  3. Abstract

    Here, the combination of theoretical computations followed by rapid experimental screening and in situ diffraction studies is demonstrated as a powerful strategy for novel compounds discovery. When applied for the previously “empty” Na−Zn−Bi system, such an approach led to four novel phases. The compositional space of this system was rapidly screened via the hydride route method and the theoretically predicted NaZnBi (PbClF type,P4/nmm) and Na11Zn2Bi5(Na11Cd2Sb5type,P) phases were successfully synthesized, while other computationally generated compounds on the list were rejected. In addition, single crystal X‐ray diffraction studies of NaZnBi indicate minor deviations from the stoichiometric 1 : 1 : 1 molar ratio. As a result, two isostructural (PbClF type,P4/nmm) Zn‐deficient phases with similar compositions, but distinctly different unit cell parameters were discovered. The vacancies on Zn sites and unit cell expansion were rationalized from bonding analysis using electronic structure calculations on stoichiometric “NaZnBi”.In‐situsynchrotron powder X‐ray diffraction studies shed light on complex equilibria in the Na−Zn−Bi system at elevated temperatures. In particular, the high‐temperature polymorphHT‐Na3Bi (BiF3type,Fmm) was obtained as a product of Na11Zn2Bi5decomposition above 611 K.HT‐Na3Bi cannot be stabilized at room temperature by quenching, and this type of structure was earlier observed in the high‐pressure polymorphHP‐Na3Bi above 0.5 GPa. The aforementioned approach of predictive synthesis can be extended to other multinary systems.

     
    more » « less
  4. Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group no. 223, a  10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a  10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/ electron localizability approach reveals ionic interaction of barium with the Li–Ge framework, while the lithium-germanium bonds are strongly polar covalent. 
    more » « less
  5. Abstract

    Transition‐metal borides (TMBs) containing Bn‐fragment (n>3) have recently gained interest for their ability to enable exciting magnetic materials. Herein, we show that the B4‐containing TiFe0.64(1)Os2.36(1)B2is a new ferromagnetic TMB with a Curie temperature of 523(2) K and a Weiss constant of 554(3) K, originating from the chain ofM3‐triangles (M=64 %Fe+36 %Os). The new phase was synthesized from the elements by arc‐melting, and its structure was elucidated by single‐crystal X‐ray diffraction. It belongs to the Ti1+xOs2−xRuB2‐type structure (space groupP2 m, no. 189) and contains trigonal‐planar B4boron fragments [B−B distance of 1.87(4) Å] interacting withM3‐triangles [M–Mdistances of 2.637(8) Å and 3.0199(2) Å]. The experimental results were supported by computational calculations based on the ideal TiFeOs2B2composition, which revealed strong ferromagnetic interactions within and between the Fe3‐triangles. This discovery represents the first magnetically ordered Os‐rich TMB, thus it will help expand our knowledge of the role of Os in low‐dimensional magnetism of intermetallics and enable the design of such materials in the future.

     
    more » « less