We perform pathintegral molecular dynamics (PIMD), ringpolymer MD (RPMD), and classical MD simulations of H
A pairdensitywave (PDW) is a superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a densitymatrix renormalizationgroup (DMRG) study of an effective
 Award ID(s):
 2000987
 Publication Date:
 NSFPAR ID:
 10362462
 Journal Name:
 npj Quantum Materials
 Volume:
 7
 Issue:
 1
 ISSN:
 23974648
 Publisher:
 Nature Publishing Group
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract O and D$$_2$$ ${}_{2}$ O using the qTIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ ${}_{2}$ , isothermal compressibility$$\rho (T)$$ $\rho \left(T\right)$ , and selfdiffusion coefficients$$\kappa _T(T)$$ ${\kappa}_{T}\left(T\right)$D (T ) of H O and D$$_2$$ ${}_{2}$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ ${}_{2}$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ ${C}_{P}\left(T\right)$ O and D$$_2$$ ${}_{2}$ O exhibit a liquidliquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ ${}_{2}$ O and D$$_2$$ ${}_{2}$ O can be fitted remarkably well using the TwoStateEquationofState (TSEOS). Using the TSEOS, we estimate that the LLCP for qTIP4P/F H$$_2$$ ${}_{2}$ O, from PIMD simulations, is located at$$_2$$ ${}_{2}$ MPa,$$P_c = 167 \pm 9$$ ${P}_{c}=167\pm 9$ K, and$$T_c = 159 \pm 6$$ ${T}_{c}=159\pm 6$ g/cm$$\rho _c = 1.02 \pm 0.01$$ ${\rho}_{c}=1.02\pm 0.01$ . Isotope substitution effects are important; the LLCP location in qTIP4P/F D$$^3$$ ${}^{3}$ O is estimated to be$$_2$$ ${}_{2}$ MPa,$$P_c = 176 \pm 4$$ ${P}_{c}=176\pm 4$ K, and$$T_c = 177 \pm 2$$ ${T}_{c}=177\pm 2$ g/cm$$\rho _c = 1.13 \pm 0.01$$ ${\rho}_{c}=1.13\pm 0.01$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effectsmore »$$^3$$ ${}^{3}$ 
Abstract Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi2D)^{3}HeA consists of branches of chiral edge states. The negative energy states are related to the groundstate angular momentum,
, for ${L}_{z}=(N/2)\hslash $ Cooper pairs. The power law suppression of the angular momentum, $N/2$ for ${L}_{z}(T)\simeq (N/2)\hslash [1\frac{2}{3}(\pi T/\mathrm{\Delta}{)}^{2}]$ , in the fully gapped 2D chiral Aphase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, groundstate angular momentum and groundstate order parameter of superfluid^{3}He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry at $0\u2a7dT\ll {T}_{c}$ . The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement length ${D}_{c2}\sim 16{\xi}_{0}$ . The PDW phase breaks timereversal symmetry, translation invariance, butmore » $D\to {D}_{{c}_{2}}$ 
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loopensemble
for$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ in (4, 8) that is drawn on an independent$$\kappa '$$ ${\kappa}^{\prime}$ LQG surface for$$\gamma $$ $\gamma $ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ ${\gamma}^{2}=16/{\kappa}^{\prime}$ for$$\hbox {CLE}_{\kappa }$$ ${\text{CLE}}_{\kappa}$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ $\kappa $ in terms of stable growthfragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$p and . This description was complete up to one missing parameter$$1p$$ $1p$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ $\rho $p and . It shows in particular that$$\kappa '$$ ${\kappa}^{\prime}$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ are related via a continuum analog of the EdwardsSokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q state Potts model (which makes sense evenmore » 
Abstract We prove that
depth local random quantum circuits with two qudit nearestneighbor gates on a$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7{n}^{1/D}$D dimensional lattice withn qudits are approximatet designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$${{\,\textrm{poly}\,}}(t)\cdot n$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7n$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($$D=1$$ $D=1$ ) is infinite and that certain counting problems are$${{\,\mathrm{\textsf{PH}}\,}}$$ $\phantom{\rule{0ex}{0ex}}\mathrm{PH}\phantom{\rule{0ex}{0ex}}$ hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constantdepth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anticoncentration”, meaning roughly that the output has nearmaximal entropy. Unitary 2designs have the desired anticoncentration property. Our result improves the required depth for this level of anticoncentration from linear depthmore »$$\#{\textsf{P}}$$ $\#P$ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ $V=23$