A<sc>bstract</sc> We present a quantum M2 brane computation of the instanton prefactor in the leading non-perturbative contribution to the ABJM 3-sphere free energy at largeNand fixed levelk. Using supersymmetric localization, such instanton contribution was found earlier to take the form$$ {F}^{inst}\left(N,k\right)=-{\left({\sin}^2\frac{2\pi }{k}\right)}^{-1}\exp \left(-2\pi \sqrt{\frac{2N}{k}}\right)+.\dots $$ The exponent comes from the action of an M2 brane instanton wrapped onS3/ℤk, which represents the M-theory uplift of the ℂP1instanton in type IIA string theory on AdS4× ℂP3. The IIA string computation of the leading largekterm in the instanton prefactor was recently performed in arXiv:2304.12340. Here we find that the exact value of the prefactor$$ {\left({\sin}^2\frac{2\pi }{k}\right)}^{-1} $$ is reproduced by the 1-loop term in the M2 brane partition function expanded near theS3/ℤkinstanton configuration. As in the Wilson loop example in arXiv:2303.15207, the quantum M2 brane computation is well defined and produces a finite result in exact agreement with localization.
more »
« less
This content will become publicly available on September 1, 2025
On a Traveling Salesman Problem for Points in the Unit Cube
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.
more »
« less
- Award ID(s):
- 1764123
- PAR ID:
- 10552426
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Algorithmica
- Volume:
- 86
- Issue:
- 9
- ISSN:
- 0178-4617
- Page Range / eLocation ID:
- 3054 to 3078
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
-
Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.more » « less
-
Abstract The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost$$f(\cdot )$$ due to an ordering$$\sigma $$ of the items (say [n]), i.e.,$$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ , where$$E_{i,\sigma }$$ is the set of items mapped by$$\sigma $$ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a$$(2-\frac{1+\ell _{f}}{1+|E|})$$ -approximation for monotone submodular MLOP where$$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ satisfies$$1 \le \ell _f \le |E|$$ . Our theory provides new approximation bounds for special cases of the problem, in particular a$$(2-\frac{1+r(E)}{1+|E|})$$ -approximation for the matroid MLOP, where$$f = r$$ is the rank function of a matroid. We further show that minimum latency vertex cover is$$\frac{4}{3}$$ -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest.more » « less
-
Abstract Rooted binarygalledtrees generalize rooted binary trees to allow a restricted class of cycles, known asgalls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees withnleaves to enumerate rooted binary unlabeled galled trees withnleaves, also enumerating rooted binary unlabeled galled trees withnleaves andggalls,$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$ . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binarynormalunlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for alln. We show that the number of rooted binary unlabeled galled trees grows with$$0.0779(4.8230^n)n^{-\frac{3}{2}}$$ , exceeding the growth$$0.3188(2.4833^n)n^{-\frac{3}{2}}$$ of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term,$$0.3910n^{\frac{1}{2}}$$ compared to$$0.3188n^{-\frac{3}{2}}$$ . For a fixed number of leavesn, the number of gallsgthat produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of$$g=0$$ and the maximum of$$g=\lfloor \frac{n-1}{2} \rfloor $$ . We discuss implications in mathematical phylogenetics.more » « less