skip to main content


Title: The jumping spider Saitis barbipes lacks a red photoreceptor to see its own sexually dimorphic red coloration
Abstract

Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spiderSaitis barbipesis distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” toS. barbipesthan the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.

 
more » « less
Award ID(s):
1831767 1734291
NSF-PAR ID:
10362530
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The Science of Nature
Volume:
109
Issue:
1
ISSN:
0028-1042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In true color vision, animals discriminate between light wavelengths, regardless of intensity, using at least two photoreceptors with different spectral sensitivity peaks. Heliconius butterflies have duplicate UV opsin genes, which encode ultraviolet and violet photoreceptors, respectively. In Heliconius erato, only females express the ultraviolet photoreceptor, suggesting females (but not males) can discriminate between UV wavelengths. We tested the ability of H. erato, and two species lacking the violet receptor, Heliconius melpomene and Eueides isabella, to discriminate between 380 and 390 nm, and between 400 and 436 nm, after being trained to associate each stimulus with a sugar reward. We found that only H. erato females have color vision in the UV range. Across species, both sexes show color vision in the blue range. Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corollas of Psiguria flowers from their outer orange petals. Moreover, previous models ( McCulloch et al., 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hydroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in other heliconiines. These results provide some of the first behavioral evidence for female H. erato UV color discrimination in the context of foraging, lending support to the hypothesis ( Briscoe et al., 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection. 
    more » « less
  2. Abstract

    We used video playback of courting maleSchizocosa ocreatawolf spiders to examine responses of intended receivers (conspecific females) and eavesdroppers (competitor males, predatory spiders, toads) to manipulations of spider color (natural color, monochromatic gray, monochromatic RBG average) displayed against complex leaf litter backgrounds (color, grayscale). Models of chromatic and achromatic contrast between spider stimuli and backgrounds were used to predict receiver responses. The results support the hypothesis that interactions between spider and background coloration affect detection and recognition, although responses varied with receiver type. Detection responses of intended receivers (femaleS. ocreata) did not fit predictions of the chromatic contrast model in some cases, but showed a fair fit to the achromatic model. Detection responses of social eavesdroppers (maleS. ocreata) fit the chromatic and achromatic contrast models slightly better than did female responses (poor fit and very good fit, respectively). Eavesdropping wolf spider predators (Rabidosa) exhibited detection responses that significantly matched predictions of the chromatic (very good fit) and achromatic (excellent fit) models. Whereas jumping spiders (Phidippus) showed a good fit to the chromatic and achromatic contrast models, toad predators had a good fit only to the chromatic model. Recognition responses revealed a different pattern of fit to the chromatic and achromatic models across receiver types, althoughRabidosaagain indicated a significant fit to both models. Taken together, the results of this study identify both chromatic and achromatic features of spider appearance as likely explanations for differences in behavioral responses of intended and unintended receivers. This outcome suggests the possibility that both sexual and natural selection likely target different features of male appearance during courtship.

     
    more » « less
  3. Abstract

    Animal coloration is a multifaceted trait with many ecological roles and related to a variety of developmental and physiological processes. Consequently, coloration is often subject to a variety of selective pressures, leading to the evolutionary maintenance of variation. In this study, we investigated hypotheses related to the maintenance of dorsal color variation in wood frogs (Rana sylvatica). First, we tested for multimodality, and whether color correlates with body size or condition or varies by sex or age class. We combined behavioral trials with visual modeling to test for sex recognition. We also considered visual models for predators and tested for an interaction between discriminability indexes (JND) of color channel (chromatic vs. achromatic) and predator type (birds vs. snakes), as well as for a within individual trade‐off between the JND of chromatic and achromatic coloration. Finally, we tested for disruptive viability selection on color using predation trials, and for antagonistic directional selection between viability selection and reproductive investment of females. We found that wood frogs present continuous color variation that does not correlate with body size or condition, but that changes with age. Wood frogs present subtle sexual dichromatism, but we found no evidence for a role of color in sex recognition. Instead, we discuss the possibility that sex differences might, at least in part, have a demographic explanation. Predator visual models indicated that wood frogs cannot solely rely on dorsal coloration for camouflage. Moreover, different predators might present selective pressures in different color channels, while individuals’ achromatic and chromatic coloration trade‐off in JND. Therefore, different selective pressures caused by different predators might interact with ontogenetic changes and developmental/physiological trade‐offs to maintain color variation. We found no relationship between color and survival or reproductive investment, suggesting further work is required to fully understand selection on color. Our results highlight the importance of understanding evolutionary trade‐offs and developmental/physiological constraints in combination with one another, and suggest the potential for an interaction between these proximate and ultimate mechanisms in the evolutionary maintenance of variation. These results likely extend beyond color expression in amphibians, and exemplify a more general process for such evolutionary outcomes.

     
    more » « less
  4. For color vision, retinal circuits separate information about intensity and wavelength. In vertebrates that use the full complement of four “ancestral” cone types, the nature and implementation of this computation remain poorly understood. Here, we establish the complete circuit architecture of outer retinal circuits underlying color processing in larval zebrafish. We find that the synaptic outputs of red and green cones efficiently rotate the encoding of natural daylight in a principal components analysis–like manner to yield primary achromatic and spectrally opponent axes, respectively. Blue cones are tuned to capture most remaining variance when opposed to green cones, while UV cone present a UV achromatic axis for prey capture. We note that fruitflies use essentially the same strategy. Therefore, rotating color space into primary achromatic and chromatic axes at the eye’s first synapse may thus be a fundamental principle of color vision when using more than two spectrally well-separated photoreceptor types. 
    more » « less
  5. Abstract

    Animals capable of rapid (i.e., physiological) body color change may use color to respond quickly to changing social or physical environments. Because males and females often differ in their environments, the sexes may use changes in body color differently, reflecting sexual dimorphism in ecological, behavioral, or morphological traits. Green anole lizards,Anolis carolinensis, frequently switch their dorsal body color between bright green and dark brown, a change that requires only seconds, but little is known regarding sexual dimorphism in their color change. We tested three hypotheses for the function of body color (thermoregulation, camouflage via background-matching, and social communication) to determine the ecological role(s) of physiological color change in anoles. First, we examined instantaneous body color to determine relationships between body color and body temperature, substrate color and type, and whether these varied between the sexes. Next, we examined the association between color change and behavioral displays. Altogether, we found that males were more likely to be green than females, and larger lizards were more often green than smaller ones, but there was no evidence that anole body color was associated with body temperature or background color during the summer breeding season. Instead, our results show that although the sexes change their color at approximately the same rates, males changed color more frequently during social displays, while females remained green when displaying. In sum, social communication appears to be the primary function of anole color change, although the functions of body color may differ in the nonbreeding season.

    Significance statement

    Many animals can change their body color in response to their environments, and in many species, males and females experience different environments. In this study, we examined whether the sexes of green anole lizards use the ability to rapidly change their body color between green and brown for different functions. We found that, when a lizard was first sighted, its body color did not appear to match its background color in either sex (suggesting that color change does not contribute to avoidance of detection by potential predators), and body color was not associated with temperature for either sex (i.e., color was unlikely to influence body temperature). Yet, males changed color more often when performing social displays to other lizards, while females remained green during social displays. Thus, rapid color change plays an important role in social communication in both sexes, highlighting how males and females may use the same behavior to convey different messages.

     
    more » « less