skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ancestral circuits for vertebrate color vision emerge at the first retinal synapse
For color vision, retinal circuits separate information about intensity and wavelength. In vertebrates that use the full complement of four “ancestral” cone types, the nature and implementation of this computation remain poorly understood. Here, we establish the complete circuit architecture of outer retinal circuits underlying color processing in larval zebrafish. We find that the synaptic outputs of red and green cones efficiently rotate the encoding of natural daylight in a principal components analysis–like manner to yield primary achromatic and spectrally opponent axes, respectively. Blue cones are tuned to capture most remaining variance when opposed to green cones, while UV cone present a UV achromatic axis for prey capture. We note that fruitflies use essentially the same strategy. Therefore, rotating color space into primary achromatic and chromatic axes at the eye’s first synapse may thus be a fundamental principle of color vision when using more than two spectrally well-separated photoreceptor types.  more » « less
Award ID(s):
1707359
PAR ID:
10383350
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
42
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spiderSaitis barbipesis distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” toS. barbipesthan the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed. 
    more » « less
  2. In prior art, advances in adaptive optics scanning laser ophthalmoscope (AOSLO) technology have enabled cones in the human fovea to be resolved in healthy eyes with normal vision and low to moderate refractive errors, providing new insight into human foveal anatomy, visual perception, and retinal degenerative diseases. These high-resolution ophthalmoscopes require careful alignment of each optical subsystem to ensure diffraction-limited imaging performance, which is necessary for resolving the smallest foveal cones. This paper presents a systematic and rigorous methodology for building, aligning, calibrating, and testing an AOSLO designed for imaging the cone mosaic of the central fovea in humans with cellular resolution. This methodology uses a two-stage alignment procedure and thorough system testing to achieve diffraction-limited performance. Results from retinal imaging of healthy human subjects under 30 years of age with refractive errors of less than 3.5 diopters using either 680 nm or 840 nm light show that the system can resolve cones at the very center of the fovea, the region where the cones are smallest and most densely packed. 
    more » « less
  3. The desensitization of the visual system as a function of the increasing luminance of a background field yields threshold vs. intensity (tvi) curves, classically measured using increment tests. Here we use a new, high-brightness display system to measure both increment and decrement thresholds. Our display system is based upon a PROPixx three-chip DLP LED color projector (VPixx Technologies, Saint- Bruno, Canada), with light from the projector collected into a field lens and focused onto a high gain rear projection screen. This display combines the brightness of traditional optical systems with the flexibility of control provided by modern displays; in particular, it is simple to use the silent substitution method to isolate single cone types. Here we report tvi curves for achromatic and (L-)ong wavelength sensitive cone isolating tests, measured using method of adjustment. Selected thresholds were verified with a spatial, two-alternative forced-choice procedure. The adapting background was white, with luminances ranging from 0.6 to 4.0 log Trolands (a maximum near 3200 cd/m2, bleaching about 1/3 of the L and M cone pigment). Our observers are slightly more sensitive to decrements than increments (about 0.1 log units), for both achromatic and L-cone tests, and to L-cone tests than to achromatic tests (about 0.6 log cone contrast units), over the entire adapting range. Both increment and decrement thresholds follow the Stiles template, approximating Weber’s law except at the lowest adapting levels. The achromatic tvi’s, for both increment and decrement tests, are, on average, slightly steeper than the L-cone tvi’s. In addition, decrement tvi’s are steeper than the increment tvi’s, indicating greater effects of light adaptation for the decrements, which may be due to differences in the effects of light adaptation in ON and OFF pathways. 
    more » « less
  4. In the Boynton Illusion, the perceived location of a low-contrast chromatic edge is altered by a nearby high-contrast luminance contour. Our study explores this color spreading effect across different chromatic directions using a position judgment task. We used the gap effect stimulus, which consists of a box evenly divided by a central contour, in half of the conditions. The suprathreshold chromatic test area embedded in the box provided a horizontal chromatic edge parallel to the central, high-contrast luminance contour that varied in its distance from the contour. An attraction effect of the nearest high-contrast contour on low-contrast chromatic and achromatic edges was observed. Specifically, when the test area is smaller than the region defined by the outer and middle contours, the edge is perceived to be closer to the middle contour (the colored area is perceived to be larger), a filling-in effect; conversely, when the test area extends beyond the middle contour, the edge is perceived to be closer to the middle contour (the colored area is perceived to be smaller), indicating a filling-out of color. Achromatic directions exhibit a relatively smaller effect than chromatic directions, whereas S-cone and equiluminant red and green edges show the same magnitude of positional displacement. The results can be interpreted as the visual system attempting to assign a single hue or brightness to a demarcated region. 
    more » « less
  5. Abstract Color vision is thought to play a key role in the evolution of animal coloration, while achromatic vision is rarely considered as a mechanism for species recognition. Here we test the hypothesis that brightness vision rather than color vision helpsAdelpha fessoniabutterflies identify potential mates while their co-mimetic wing coloration is indiscriminable to avian predators. We examine the trichromatic visual system ofA. fessoniaand characterize its photoreceptors using RNA-seq, eyeshine, epi-microspectrophotometry, and optophysiology. We model the discriminability of its wing color patches in relation to those of its co-mimic,A. basiloides, throughA. fessoniaand avian eyes. Visual modeling suggests that neitherA. fessonianor avian predators can readily distinguish the co-mimics’ coloration using chromatic or achromatic vision under natural conditions. These results suggest that mimetic colors are well-matched to visual systems to maintain mimicry, and that mate avoidance between these two look-alike species relies on other cues. 
    more » « less