skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scattering and sublimation: a multiscale view of µm-sized dust in the inclined disc of HD 145718
ABSTRACT We present multi-instrument observations of the disc around the Herbig Ae star, HD 145718, employing geometric and Monte Carlo radiative transfer models to explore the disc orientation, the vertical and radial extent of the near-infrared (NIR) scattering surface, and the properties of the dust in the disc surface and sublimation rim. The disc appears inclined at 67–71°, with position angle, PA = −1.0 to 0.6°, consistent with previous estimates. The NIR scattering surface extends out to $${\sim}75\,$$ au and we infer an aspect ratio, hscat(r)/r ∼ 0.24 in J band; ∼0.22 in H band. Our Gemini Planet Imager images and VLTI + CHARA NIR interferometry suggest that the disc surface layers are populated by grains ≳λ/2π in size, indicating these grains are aerodynamically supported against settling and/or the density of smaller grains is relatively low. We demonstrate that our geometric analysis provides a reasonable assessment of the height of the NIR scattering surface at the outer edge of the disc and, if the inclination can be independently constrained, has the potential to probe the flaring exponent of the scattering surface in similarly inclined (i ≳ 70°) discs. In re-evaluating HD 145718’s stellar properties, we found that the object’s dimming events – previously characterized as UX Or and dipper variability – are consistent with dust occultation by grains larger, on average, than found in the ISM. This occulting dust likely originates close to the inferred dust sublimation radius at $$0.17\,$$ au.  more » « less
Award ID(s):
2034336 1636624
PAR ID:
10362537
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2434-2452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The outer regions of the protoplanetary disc surrounding the T Tauri star HD 143006 show rings, dust asymmetries and shadows. Whilst rings and dust asymmetries can arise from companions and other mechanisms, shadows and misaligned discs in particular are typically attributed to the presence of misaligned planets or stellar-mass companions. To understand the mechanisms that drive these traits, the innermost regions of discs need to be studied. Using CHARA/MIRCX and VLTI/PIONIER, we observed the sub-au region of HD 143006 . We constrain the orientation of the inner disc of HD 143006 and probe whether a misalignment between the inner and outer disc could be the cause of the shadows. Modelling the visibilities using a geometric model, the inclination and position angle are found to be i = 22○ ± 3○ and PA = 158○ ± 8○ respectively, with an inner dust sublimation radius of ~0.04 au. The inner disc is misaligned by 39○ ± 4○ with respect to the outer disc, with the far side of the inner disc to the east and the far side of the outer disc to the west. We constrain h/R (scattering surface/radius of scattered light) of the outer disc at 18 au to be about 13 % by calculating the offset between the shadow position and the central star. No companion was detected, with a magnitude contrast of 4.4 in the H-band and placing an upper mass limit of 0.17M⊙ at separations of 0 − 8 au. Therefore, we cannot confirm or rule out that a low-mass star or giant planet is responsible for the misalignment and dust sub-structures. 
    more » « less
  2. ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains. 
    more » « less
  3. ABSTRACT The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by $${\sim}100\, \mu{\rm m}$$-sized spherical grains (with a size parameter x ≡ 2$$\pi$$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs can have sizes in the millimetre regime, which may alleviate the tension between the grain sizes inferred from scattering and other means. Additionally, if large irregular grains are not settled to the mid-plane, their strong forward scattering can produce asymmetries between the near and far side of an inclined disc, which can be used to infer their presence. 
    more » « less
  4. Abstract Planets form in dusty, gas-rich disks around young stars, while at the same time, the planet formation process alters the physical and chemical structure of the disk itself. Embedded planets will locally heat the disk and sublimate volatile-rich ices, or in extreme cases, result in shocks that sputter heavy atoms such as Si from dust grains. This should cause chemical asymmetries detectable in molecular gas observations. Using high-angular-resolution ALMA archival data of the HD 169142 disk, we identify compact SOJ= 88− 77and SiSJ= 19 − 18 emission coincident with the position of a ∼ 2MJupplanet seen as a localized, Keplerian NIR feature within a gas-depleted, annular dust gap at ≈38 au. The SiS emission is located along an azimuthal arc and has a morphology similar to that of a known12CO kinematic excess. This is the first tentative detection of SiS emission in a protoplanetary disk and suggests that the planet is driving sufficiently strong shocks to produce gas-phase SiS. We also report the discovery of compact12CO and13COJ= 3 − 2 emission coincident with the planet location. Taken together, a planet-driven outflow provides the best explanation for the properties of the observed chemical asymmetries. We also resolve a bright, azimuthally asymmetric SO ring at ≈24 au. While most of this SO emission originates from ice sublimation, its asymmetric distribution implies azimuthal temperature variations driven by a misaligned inner disk or planet–disk interactions. Overall, the HD 169142 disk shows several distinct chemical signatures related to giant planet formation and presents a powerful template for future searches of planet-related chemical asymmetries in protoplanetary disks. 
    more » « less
  5. Context. T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer resolution that is three times higher and a better baseline position angle coverage than previous observations. Aims. We aim to investigate the characteristics of the circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. Methods. The CHARA array offers unique opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB three-telescope combiner in the K -band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrain the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical models of dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Results. Image reconstruction reveals an inclined disk with slight asymmetry along its minor-axis, likely due to inclination effects obscuring the inner disk rim through absorption of incident star light on the near-side and thermal re-emission and scattering of the far-side. Geometric modelling of a skewed ring finds the inner rim at 0.17 ± 0.02 au with an inclination of 50.9 ± 1.0° and minor axis position angle 60.8 ± 1.2°. Radiative transfer modelling shows a flared disk with an inner radius at 0.18 au which implies a grain size of 0.4 μ m assuming astronomical silicates and a scale height of 15.0 at 100 au. Among the tested radiative transfer models, only the dusty disk wind successfully accounts for the K -band excess by introducing dust above the mid-plane. 
    more » « less