We present multi-instrument observations of the disc around the Herbig Ae star, HD 145718, employing geometric and Monte Carlo radiative transfer models to explore the disc orientation, the vertical and radial extent of the near-infrared (NIR) scattering surface, and the properties of the dust in the disc surface and sublimation rim. The disc appears inclined at 67–71°, with position angle, PA = −1.0 to 0.6°, consistent with previous estimates. The NIR scattering surface extends out to ${\sim}75\,$ au and we infer an aspect ratio, hscat(r)/r ∼ 0.24 in J band; ∼0.22 in H band. Our Gemini Planet Imager images and VLTI + CHARA NIR interferometry suggest that the disc surface layers are populated by grains ≳λ/2π in size, indicating these grains are aerodynamically supported against settling and/or the density of smaller grains is relatively low. We demonstrate that our geometric analysis provides a reasonable assessment of the height of the NIR scattering surface at the outer edge of the disc and, if the inclination can be independently constrained, has the potential to probe the flaring exponent of the scattering surface in similarly inclined (i ≳ 70°) discs. In re-evaluating HD 145718’s stellar properties, we found that the object’s dimming events – previously characterized as UX Or more »
- Publication Date:
- NSF-PAR ID:
- 10362537
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 2434-2452
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Context. T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer resolution that is three times higher and a better baseline position angle coverage than previous observations. Aims. We aim to investigate the characteristics of the circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. Methods. The CHARA array offers unique opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB three-telescope combiner in the K -band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrain the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical models of dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Results. Image reconstruction reveals an inclined disk with slight asymmetrymore »
-
ABSTRACT The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by ${\sim}100\, \mu{\rm m}$-sized spherical grains (with a size parameter x ≡ 2$\pi$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs canmore »
-
ABSTRACT We present new ALMA Band 7 observations of the edge-on debris disc around the M1V star GSC 07396-00759. At ∼20 Myr old and in the β Pictoris Moving Group along with AU Mic, GSC 07396-00759 joins it in the handful of low-mass M-dwarf discs to be resolved in the sub-mm. With previous VLT/SPHERE scattered light observations, we present a multiwavelength view of the dust distribution within the system under the effects of stellar wind forces. We find the mm dust grains to be well described by a Gaussian torus at 70 au with a full width at half-maximum of 48 au and we do not detect the presence of CO in the system. Our ALMA model radius is significantly smaller than the radius derived from polarimetric scattered light observations, implying complex behaviour in the scattering phase function. The brightness asymmetry in the disc observed in scattered light is not recovered in the ALMA observations, implying that the physical mechanism only affects smaller grain sizes. High-resolution follow-up observations of the system would allow investigation into its unique dust features as well as provide a true coeval comparison for its smaller sibling AU Mic, singularly well-observed amongst M-dwarfs systems.
-
Abstract Wide-field near-infrared (NIR) polarimetry was used to examine disk systems around two brown dwarfs (BDs) and two young stellar objects (YSOs) embedded in the Heiles Cloud 2 (HCl2) dark molecular cloud in Taurus as well as numerous stars located behind HCl2. Inclined disks exhibit intrinsic NIR polarization due to scattering of photospheric light, which is detectable even for unresolved systems. After removing polarization contributions from magnetically aligned dust in HCl2 determined from the background star information, significant intrinsic polarization was detected from the disk systems of one BD (ITG 17) and both YSOs (ITG 15, ITG 25), but not from the other BD (2M0444). The ITG 17 BD shows good agreement of the disk orientation inferred from the NIR and from published Atacama Large Millimeter/submillieter Array dust continuum imaging. ITG 17 was also found to reside in a 5200 au wide binary (or hierarchical quad star system) with the ITG 15 YSO disk system. The inferred disk orientations from the NIR for ITG 15 and ITG 17 are parallel to each other and perpendicular to the local magnetic field direction. The multiplicity of the system and the large BD disk nature could have resulted from formation in an environmentmore »
-
ABSTRACT Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where themore »