skip to main content

Title: Discovery of 74 new bright ZZ Ceti stars in the first three years of TESS

We report the discovery of 74 new pulsating DA white dwarf stars, or ZZ Cetis, from the data obtained by the Transiting Exoplanet Survey Satellite mission, from Sectors 1 to 39, corresponding to the first 3 cycles. This includes objects from the Southern hemisphere (Sectors 1–13 and 27–39) and the Northern hemisphere (Sectors 14–26), observed with 120 s- and 20 s-cadence. Our sample likely includes 13 low-mass and one extremely low-mass white dwarf candidate, considering the mass determinations from fitting Gaia magnitudes and parallax. In addition, we present follow-up time series photometry from ground-based telescopes for 11 objects, which allowed us to detect a larger number of periods. For each object, we analysed the period spectra and performed an asteroseismological analysis, and we estimate the structure parameters of the sample, i.e. stellar mass, effective temperature, and hydrogen envelope mass. We estimate a mean asteroseismological mass of 〈Msis〉 = 0.635 ± 0.015 M⊙, excluding the candidate low or extremely low-mass objects. This value is in agreement with the mean mass using estimates from Gaia data, which is 〈Mphot〉 = 0.631 ± 0.040 M⊙, and with the mean mass of previously known ZZ Cetis of 〈M*〉 = 0.644 ± 0.034 M⊙. Our sample of 74 new bright ZZ Cetis increases the number of known ZZ Cetis by ∼20 per cent.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 1574-1590
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results.more »In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆  = 0.588 ± 0.024  M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025   M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆  = 0.560 ± 0.028  M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis  = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π  = 23.244 ± 0.024,  d Gaia  = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology.« less
  2. Context. The recent arrival of continuous photometric observations of unprecedented quality from space missions has strongly promoted the study of pulsating stars and caused great interest in the stellar astrophysics community. In the particular case of pulsating white dwarfs, the TESS mission is taking asteroseismology of these compact stars to a higher level, emulating or even surpassing the performance of its predecessor, the Kepler mission. Aims. We present a detailed asteroseismological analysis of six GW Vir stars that includes the observations collected by the TESS mission. Methods. We processed and analyzed TESS observations of RX J2117+3412 (TIC 117070953), HS 2324+3944 (TIC 352444061), NGC 6905 (TIC 402913811), NGC 1501 (TIC 084306468), NGC 2371 (TIC 446005482), and K 1−16 (TIC 233689607). We carried out a detailed asteroseismological analysis of these stars on the basis of PG 1159 evolutionary models that take into account the complete evolution of the progenitor stars. We constrained the stellar mass of these stars by comparing the observed period spacing with the average of the computed period spacings, and we employed the individual observed periods to search for a representative seismological model when possible. Results. In total, we extracted 58 periodicities from the TESS light curves of thesemore »GW Vir stars using a standard prewhitening procedure to derive the potential pulsation frequencies. All the oscillation frequencies that we found are associated with g -mode pulsations, with periods spanning from ∼817 s to ∼2682 s. We find constant period spacings for all but one star (K 1−16), which allowed us to infer their stellar masses and constrain the harmonic degree ℓ of the modes. Based on rotational frequency splittings, we derive the rotation period of RX J2117+3412, obtaining a value in agreement with previous determinations. We performed period-to-period fit analyses on five of the six analyzed stars. For four stars (RX J2117+3412, HS 2324+3944, NGC 1501, and NGC 2371), we were able to find an asteroseismological model with masses that agree with the stellar mass values inferred from the period spacings and are generally compatible with the spectroscopic masses. Obtaining seismological models allowed us to estimate the seismological distance and compare it with the precise astrometric distance measured with Gaia . Finally, we find that the period spectrum of K 1−16 exhibits dramatic changes in frequency and amplitude that together with the scarcity of modes prevented us from meaningful seismological modeling of this star. Conclusions. The high-quality data collected by the TESS space mission, considered simultaneously with ground-based observations, provide very valuable input to the asteroseismology of GW Vir stars, similar to the case of other classes of pulsating white dwarf stars. The TESS mission, in conjunction with future space missions and upcoming surveys, will make impressive progress in white dwarf asteroseismology.« less
  3. Context. The Transiting Exoplanet Survey Satellite (TESS) mission is revolutionizing the blossoming area of asteroseismology, particularly of pulsating white dwarfs and pre-white dwarfs, thus continuing the impulse of its predecessor, the Kepler mission. Aims. In this paper, we present the observations from the extended TESS mission in both 120 s short-cadence and 20 s ultra-short-cadence mode of two pre-white dwarf stars showing hydrogen deficiency. We identify them as two new GW Vir stars, TIC 333432673 and TIC 095332541. We apply the tools of asteroseismology with the aim of deriving their structural parameters and seismological distances. Methods. We carried out a spectroscopic analysis and a spectral fitting of TIC 333432673 and TIC 095332541. We also processed and analyzed the high-precision TESS photometric light curves of the two target stars, and derived their oscillation frequencies. We performed an asteroseismological analysis of these stars on the basis of PG 1159 evolutionary models that take into account the complete evolution of the progenitor stars. We searched for patterns of uniform period spacings in order to constrain the stellar mass of the stars. We employed the individual observed periods to search for a representative seismological model. Results. The analysis of the TESS light curves ofmore »TIC 333432673 and TIC 095332541 reveals the presence of several oscillations with periods ranging from 350 to 500 s associated to typical gravity ( g )-modes. From follow-up ground-based spectroscopy, we find that both stars have a similar effective temperature ( T eff  = 120 000 ± 10 000 K) and surface gravity (log g  = 7.5 ± 0.5), but a different He/C composition of their atmosphere. On the basis of PG 1159 evolutionary tracks, we derived a spectroscopic mass of M ⋆ = 0.58 −0.08 +0.16   M ⊙ for both stars. Our asteroseismological analysis of TIC 333432673 allowed us to find a constant period spacing compatible with a stellar mass M ⋆  ∼ 0.60 − 0.61  M ⊙ , and an asteroseismological model for this star with a stellar mass M ⋆ = 0.589 ± 0.020 M ⊙ , as well as a seismological distance of d = 459 −156 +188 pc. For this star, we find an excellent agreement between the different methods to infer the stellar mass, and also between the seismological distance and that measured with Gaia ( d Gaia = 389 −5.2 +5.6 pc). For TIC 095332541, we have found a possible period spacing that suggests a stellar mass of M ⋆  ∼ 0.55 − 0.57  M ⊙ . Unfortunately, we have not been able to find an asteroseismological model for this star. Conclusions. Using the high-quality data collected by the TESS space mission and follow-up spectroscopy, we have been able to discover and characterize two new GW Vir stars. The TESS mission is having, and will continue to have, an unprecedented impact on the area of white-dwarf asteroseismology.« less

    Gaia provided the largest ever catalogue of white dwarf stars. We use this catalogue, along with the third public data release of the Zwicky Transient Facility (ZTF), to identify new eclipsing white dwarf binaries. Our method exploits light-curve statistics and the box least-squares algorithm to detect periodic light-curve variability. The search revealed 18 new binaries, of which 17 are eclipsing. We use the position in the Gaia H-R diagram to classify these binaries and find that the majority of these white dwarfs have MS companions. We identify one system as a candidate eclipsing white dwarf–brown dwarf binary and a further two as extremely low-mass white dwarf binaries. We also provide identification spectroscopy for 17 of our 18 binaries. Running our search method on mock light curves with real ZTF sampling, we estimate our efficiency of detecting objects with light curves similar to the ones of the newly discovered binaries. Many more binaries are to be found in the ZTF footprint as the data releases grow, so our survey is ongoing.

  5. Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluatedmore »from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate.« less