ABSTRACT We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($$M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$$), run to z = 0 with $$30\, \mathrm{M}_{\odot }$$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $$M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $$M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($$M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core $${\gt}200\rm \, pc$$, while lower mass UFDs exhibit cusps down to $${\lesssim}100\rm \, pc$$, as expected from energetic arguments. Our dwarfs with $$M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).
more »
« less
General relativistic pulsations of ultra-massive ZZ Ceti stars
ABSTRACT Ultra-massive white dwarf stars are currently being discovered at a considerable rate, thanks to surveys such as the Gaia space mission. These dense and compact stellar remnants likely play a major role in Type Ia supernova explosions. It is possible to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs, general relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses ranging from 1.29 to $$1.369 \ \mathrm{M}_{\odot }$$ with the aim of assessing the impact of general relativity on the adiabatic gravity (g)-mode period spectrum of very high mass ZZ Ceti stars. Employing the relativistic Cowling approximation for the pulsation analysis, we find that the critical buoyancy (Brunt–Väisälä) and acoustic (Lamb) frequencies are larger for the relativistic case, compared to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar mass. In addition, the g-mode periods are shorter in the relativistic case than those in the Newtonian computations, with relative differences of up to ∼$50$ per cent for the highest mass models ($$1.369 \ \mathrm{M}_{\odot }$$) and for effective temperatures typical of the ZZ Ceti instability strip. Hence, the effects of general relativity on the structure, evolution, and pulsations of white dwarfs with masses larger than ∼$$1.29 \ \mathrm{M}_{\odot }$$ cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars.
more »
« less
- PAR ID:
- 10439350
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 524
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 5929-5943
- Size(s):
- p. 5929-5943
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT The first bright objects to form in the Universe might not have been ‘ordinary’ fusion-powered stars, but ‘dark stars’ (DSs) powered by the annihilation of dark matter (DM) in the form of weakly interacting massive particles (WIMPs). If discovered, DSs can provide a unique laboratory to test DM models. DSs are born with a mass of the order of M⊙ and may grow to a few million solar masses; in this work we investigate the properties of early DSs with masses up to $$\sim \! 1000 \, \mathrm{ M}_\odot$$, fueled by WIMPS weighing 100 GeV. We improve the previous implementation of the DM energy source into the stellar evolution code mesa. We show that the growth of DSs is not limited by astrophysical effects: DSs up to $$\sim \!1000 \, \mathrm{ M}_{\odot }$$ exhibit no dynamical instabilities; DSs are not subject to mass-loss driven by super-Eddington winds. We test the assumption of previous work that the injected energy per WIMP annihilation is constant throughout the star; relaxing this assumption does not change the properties of the DSs. Furthermore, we study DS pulsations, for the first time investigating non-adiabatic pulsation modes, using the linear pulsation code gyre. We find that acoustic modes in DSs of masses smaller than $$\sim \! 200 \, \mathrm{ M}_\odot$$ are excited by the κ − γ and γ mechanism in layers where hydrogen or helium is (partially) ionized. Moreover, we show that the mass-loss rates potentially induced by pulsations are negligible compared to the accretion rates.more » « less
-
Abstract The Kepler and K2 missions discovered multiple ZZ Ceti white dwarf pulsators that exhibit recurrent outbursts. These outbursting white dwarfs are near the red edge of the ZZ Ceti instability strip, suggesting that the phenomenon is physically related to the cessation of pulsations. We present multi-day ground-based monitoring of the poorly studied red-edge ZZ Ceti pulsator PG 1541+651. We do not detect any outbursts in our data. We do find that this pulsator has a very rich and time-variable spectrum of modes in its periodogram. The white dwarf lies in the northern continuous viewing zone of TESS; therefore, it has extensive archival light curves ripe for a detailed asteroseismic analysis of this star.more » « less
-
With the precision now afforded by modern space-based photometric observations from the retired K2 and current TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics. To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post- Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations. As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are (i) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface chemical transition from μe = 2 to μe = 1, simulating a surface hydrogen layer. A comparison of Newtonian and 1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a typical WD, this fractional difference is ∼10−4 and is greater than the period uncertainty σΠ/Π of many WD pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in principle, include GR effects to 1PN order.more » « less
-
null (Ed.)Context. Before reaching their quiescent terminal white-dwarf cooling branch, some low-mass helium-core white dwarf stellar models experience a number of nuclear flashes which greatly reduce their hydrogen envelopes. Just before the occurrence of each flash, stable hydrogen burning may be able to drive global pulsations that could be relevant in shedding some light on the internal structure of these stars through asteroseismology, similarly to what occurs with other classes of pulsating white dwarfs. Aims. We present a pulsational stability analysis applied to low-mass helium-core stars on their early white-dwarf cooling branches going through CNO flashes in order to study the possibility that the ε mechanism is able to excite gravity-mode pulsations. We assess the ranges of unstable periods and the corresponding instability domain in the log g − T eff plane. Methods. We carried out a nonadiabatic pulsation analysis for low-mass helium-core white-dwarf models with stellar masses between 0.2025 and 0.3630 M ⊙ going through CNO flashes during their early cooling phases. Results. We found that the ε mechanism due to stable hydrogen burning can excite low-order ( ℓ = 1, 2) gravity modes with periods between ∼80 and 500 s for stars with 0.2025 ≲ M ⋆ / M ⊙ ≲ 0.3630 located in an extended region of the log g − T eff diagram, with effective temperature and surface gravity in the ranges 15 000 ≲ T eff ≲ 38 000 K and 5.8 ≲ log g ≲ 7.1, respectively. For the sequences that experience multiple CNO flashes, we found that with every consecutive flash, the region of instability becomes wider and the modes are more strongly excited. The magnitudes of the rate of period change for these modes are in the range of ∼10 −10 –10 −11 [s/s]. Conclusions. Since the timescales required for these modes to reach amplitudes large enough to be observable are shorter than their corresponding evolutionary timescales, the detection of pulsations in these stars is feasible. Given the current problems in distinguishing some stars that populate the same region of the log g − T eff plane, the eventual detection of short-period pulsations may help in the classification of such stars. Furthermore, if a low-mass white dwarf star were found to pulsate with low-order gravity modes in this region of instability, it would confirm our result that such pulsations can be driven by the ε mechanism. In addition, confirming a rapid rate of period change in these pulsations would support the idea that these stars actually experience CNO flashes, as has been predicted by evolutionary calculations.more » « less
An official website of the United States government
