Abstract Developing intelligent wearable energy storage devices that can endure harsh conditions is of interest for emerging applications in next‐generation electronics. Despite recent success in exploring functional materials for sophisticated self‐adaptivity in energy storage devices, it remains challenging to obtain both high reliability and superior performance. Herein, a novel method for fabricating micropatterned wearable thermoresponsive supercapacitors via direct ink writing (DIW) technique is reported. Thermal runaway of typical electrochemical storage devices with high power delivery capability can cause serious safety problems. The proposed temperature‐dependent structure works as self‐protection against the common thermal runaway issues of electrochemical energy storage devices. Such construction provides an automatic adjustment as high as 8 F g−1in specific capacitance, resulting in an overall heat reduction by up to 40%. The printing resolution of the electrodes (175 µm) is among the best in recently reported planar carbon‐based energy storage devices by DIW technique. Manufacturing‐related parameters such as time‐dependent printing speed and curing temperature are also investigated to fabricate this integrated design with varied materials and accuracy. This strategy shows tremendous promise for future intelligent energy storage devices.
more »
« less
Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long‐Lasting Self‐Cleaning Textiles
Abstract Wearable personal protective equipment that is decorated with photoactive self‐cleaning materials capable of actively neutralizing biological pathogens is in high demand. Here, we developed a series of solution‐processable, crystalline porous materials capable of addressing this challenge. Textiles coated with these materials exhibit a broad range of functionalities, including spontaneous reactive oxygen species (ROS) generation upon absorption of daylight, and long‐term ROS storage in dark conditions. The ROS generation and storage abilities of these materials can be further improved through chemical engineering of the precursors without altering the three‐dimensional assembled superstructures. In comparison with traditional TiO2or C3N4self‐cleaning materials, the fluorinated molecular coating material HOF‐101‐F shows a 10‐ to 60‐fold enhancement of ROS generation and 10‐ to 20‐fold greater ROS storage ability. Our results pave the way for further developing self‐cleaning textile coatings for the rapid deactivation of highly infectious pathogenic bacteria under both daylight and light‐free conditions.
more »
« less
- Award ID(s):
- 2029270
- PAR ID:
- 10362586
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 8
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polymer‐based chiral materials with exceptional optical activity can dramatically impact integrated chiral photonics due to the tunability of their optical responses coupled with ease of fabrication. Realizing these applications requires increasing the absorbance dissymmetry factor. Here, in situ, the synthesis of gold nanostars is introduced in a chiral polymer medium to produce chiral polymer‐anisotropic plasmonic nanocrystal nanocomposites. The optimized nanocomposite shows a tenfold enhancement of dissymmetry factor,gabs(up to 0.64) and a corresponding 46‐fold augmented circular dichroism (CD) value upon annealing, relative to the annealed pure chiral polymer film. Moreover, the enhancement relative to the non‐annealed polymer‐gold nanostar nanocomposite is strikingly higher: a 35‐fold increase ingabsand a 4272‐fold increase in CD. Based on computational analysis, it is concluded that the local plasmon field enhancement around the crevices and tips of nanostars is mainly responsible for the observed effect which is further supported by a signal enhancement in Surface Enhanced Raman Scattering (SERS). Thus, this study underscores the significant role of close‐range plasmon interactions in altering the chiroptical response of nanocomposite materials and a practical pathway toward the realization of next‐generation integrated photonics and optoelectronic circuitry with photon spin control.more » « less
-
Abstract Self‐assembled materials with complex nanoscale and mesoscale architecture attract considerable attention in energy and sustainability technologies. Their high performance can be attributed to high surface area, quantum effects, and hierarchical organization. Delineation of these contributions is, however, difficult because complex materials display stochastic structural patterns combining both order and disorder, which is difficult to be consistently reproduced yet being important for materials' functionality. Their compositional variability make systematic studies even harder. Here, a model system of FeSe2“hedgehog” particles (HPs) was selected to gain insight into the mechanisms of charge storage n complex nanostructured materials common for batteries and supercapacitors. Specifically, HPs represent self‐assembled biomimetic nanomaterials with a medium level of complexity; they display an organizational pattern of spiky colloids with considerable disorder yet non‐random; this patternt is consistently reproduced from particle to particle. . It was found that HPs can accommodate ≈70× greater charge density than spheroidal nano‐ and microparticles. Besides expanded surface area, the enhanced charge storage capacity was enabled by improved hole transport and reversible atomic conformations of FeSe2layers in the blade‐like spikes associated with the rotatory motion of the Se atoms around Fe center. The dispersibility of HPs also enables their easy integration into energy storage devices. HPs quadruple stored electrochemical energy and double the storage modulus of structural supercapacitors.more » « less
-
The multiscale architecture of electrochemical energy storage (EES) materials critically impacts device performance, including energy, power, and durability. The pore space of nano‐ to macrostructured electrodes determines mass transport within the electrolyte and defines the effective energy density. The dimensions of the active charge‐storing materials can increase stability during cycling by accommodating strains from electrochemical–mechanical coupling while also defining surface area that increases capacitive charge storage, decreases charge‐transfer resistance, but also leads to low efficiency and degradation from interfacial reactions. Thus, elucidating and developing a fundamental understanding of these correlations requires materials with precisely tunable nanoscale architectures. Herein, approaches that take advantage of the nanoscale control offered by block copolymer (BCP) self‐assembly are reviewed and insights gained from associated nanoscale phenomena observed in EES are highlighted. Systematic studies that use custom‐tailored BCPs to reveal fundamental nanostructure–property–performance relationships are emphasized. Importantly, most reports of nanostructured materials utilize low loadings and thin electrodes and results represent mass transfer limitations at the particle scale. However, as cell‐level performance involves mass transport over 10–100s of micrometers, recently emerging BCP‐based processes are further highlighted, leading to hierarchical meso/macroporous materials needed for creating multiscale structure–performance relationships and next‐generation energy storage material architectures.more » « less
-
We present Jammed Interconnected Bilayer Emulsions (JIBEs) as a class of tissue-like materials with macroscopic scalability and rapid fabrication, comprising millions to billions of bilayer-separated aqueous compartments. These materials closely mimic the organizational structure and properties of biological tissues. Our rapid self-assembly method for producing JIBEs generates milliliter- to deciliter-scale volumes within minutes representing over 10,000-fold improvement in the fabrication speed of droplet-based artificial tissues compared to existing droplet-based methods, enabling the creation of a truly macroscopic material. The method is highly adaptable to a wide range of amphiphiles, including lipids and block-copolymers, providing flexibility in tailoring JIBEs for diverse applications. The jammed architecture of JIBEs imparts unique properties, such as direct 3D-printabilty into aqueous solutions or onto air-exposed surfaces. Their membrane-bound structure also allows functionalization with biological and artificial nanochannels, enabling the material to exhibit the specific properties of the incorporated channels. In this work, we demonstrate three key features of JIBEs using distinct ion channels: tunable conductance, selective transport, and memristance. Incorporating an E. coli outer membrane protein increased ionic conductance by approximately 4,400-fold compared to non-functionalized tissues. Introducing a peptide-based transporter produced ion-selective membranes capable of discriminating ammonium over sodium at a ratio greater than 15:1. Finally, incorporating a model voltage-gated pore enabled the construction of a massively networked memristive device. We propose that functionalizing JIBEs with additional membrane proteins or synthetic ion channels could unlock a broad range of applications, including separations, energy generation and storage, neuromorphic computing, tissue engineering, drug delivery, and soft robotics.more » « less
An official website of the United States government
