In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field.
more »
« less
Comparative Analysis of Chemical Redox between Redox Shuttles and a Lithium-Ion Cathode Material via Electrochemical Analysis of Redox Shuttle Conversion
Chemical redox reactions between redox shuttles and lithium-ion battery particles have applications in electrochemical systems including redox-mediated flow batteries, photo-assisted lithium-ion batteries, and lithium-ion battery overcharge protection. These previous studies, combined with interest in chemical redox of battery materials in general, has resulted in previous reports of the chemical oxidation and/or reduction of solid lithium-ion materials. However, in many of these reports, a single redox shuttle is the focus and/or the experimental conditions are relatively limited. Herein, a study of chemical redox for a series of redox shuttles reacted with a lithium-ion battery cathode material will be reported. Both oxidation and reduction of the solid material with redox shuttles as a function of time will be probed using ferrocene derivatives with different half-wave potentials. The progression of the chemical redox was tracked by using electrochemical analysis of the redox shuttles in a custom electrochemical cell, and rate constants for chemical redox were extracted from using two different models. This study provides evidence that redox shuttle-particle interactions play a role in the overall reaction rate, and more broadly support that this experimental method dependent on electrochemical analysis can be applied for comparison of redox shuttles reacting with solid electroactive materials.
more »
« less
- PAR ID:
- 10362622
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 168
- Issue:
- 5
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 050546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The all-solid-state battery is a promising alternative to conventional lithium-ion batteries that have reached the limit of their technological capabilities. The next-generation lithium-ion batteries are expected to be eco-friendly, long-lasting, and safe while demonstrating high energy density and providing ultrafast charging. These much-needed properties require significant efforts to uncover and utilize the chemical, morphological, and electrochemical properties of solid-state electrolytes and cathode nanocomposites. Here we report solid-state electrochemical cells based on lithium oxyhalide electrolyte that is produced by melt-casting. This method results in enhanced cathode/electrolyte interfaces that allow exceptionally high charging rates (>4000C) while maintaining the electrochemical stability of solid-state electrolyte in the presence of lithium metal anode and lithium iron phosphate-based cathode. The cells exhibit long cycle life (>1800 cycles at 100 °C) and offer a promising route to the next-generation all-solid-state battery technology.more » « less
-
The rapid expansion of electric vehicle (EV) fleet calls for large number of lithium-ion batteries to be recycled at their end-of-life. Various recycling methods have been developed or under development to recover the high-value materials from retired lithium-ion batteries. Amongst these methods, direct recycling techniques have been developed and reported to recycle battery materials for reuse in new battery manufacturing since the electrochemical properties of the recycled materials can be fully recovered to the same level of pristine materials. In literature, innovative sintering processes have been developed to recover the composition and crystal structure of spent cathode materials; hydrothermal regeneration processes have been reported to regenerate the spent cathode materials in the solvents at a moderate temperature, followed by the high-temperature short annealing process. The regenerated cathode materials show the same specific capacity and cycling performance as those of pristine materials. The electrochemical regeneration method is applied to fully recover the electrochemical performance of cathode material with stable crystal structure. While the direct recycling techniques are still under development, their future applications in industry are still not clear. This study aims to classify and summarize state-of-the-art of the direct recycling methods, and evaluate the regenerated cathode materials’ performance and the application potential to be used for manufacturing of new lithium-ion batteries in future. The results will help increase understanding of the direct recycling technologies and facilitate the associated R&D for future industrial scaling-up of direct recycling processes for retired lithium ion batteries from electric vehicles.more » « less
-
Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications.more » « less
-
Lithium‐ion batteries have gradually reached their theoretical limits. To meet the growing demand for higher energy storage technology, finding alternative battery chemistries has become the major concern. Fortunately, lithium–sulfur batteries are considered the most promising next‐generation energy storage technology due to being cost‐effective and having high theoretical energy density. However, the further commercialization of lithium–sulfur batteries is hindered due to the growth of lithium dendrites and the shuttle effect of soluble lithium polysulfides. This review provides an overview of the challenges facing lithium–sulfur batteries. Furthermore, a comprehensive overview of lithium metal protection strategies is provided including electrolyte optimization, construction of artificial solid electrolyte layers, utilization of hosting materials, and design of separators, as well as a theoretical understanding and analysis of the underlying methods. This review puts forward general conclusions and prospects for the practical application of lithium–sulfur batteries in the future and the promotion of technology development of lithium metal batteries.more » « less