Speech and language development in children is crucial for ensuring optimal outcomes in their long term development and life-long educational journey. A child’s vocabulary size at the time of kindergarten entry is an early indicator of learning to read and potential long-term success in school. The preschool classroom is thus a promising venue for monitoring growth in young children by measuring their interactions with teachers and classmates. Automatic Speech Recognition (ASR) technologies provide the ability for ‘Early Childhood’ researchers for automatically analyzing naturalistic recordings in these settings. For this purpose, data are collected in a high-quality childcare center in the United States using Language Environment Analysis (LENA) devices worn by the preschool children. A preliminary task for ASR of daylong audio recordings would involve diarization, i.e., segmenting speech into smaller parts for identifying ‘who spoke when.’ This study investigates a Deep Learning-based diarization system for classroom interactions of 3-5-year-old children. However, the focus is on ’speaker group’ diarization, which includes classifying speech segments as being from adults or children from across multiple classrooms. SincNet based diarization systems achieve utterance level Diarization Error Rate of 19.1%. Utterance level speaker group confusion matrices also show promising, balanced results. These diarization systems havemore »
Measuring Frequency of Child-directed WH-Question Words for Alternate Preschool Locations using Speech Recognition and Location Tracking Technologies
Speech and language development in children are crucial for ensuring
effective skills in their long-term learning ability. A child’s
vocabulary size at the time of entry into kindergarten is an early
indicator of their learning ability to read and potential long-term
success in school. The preschool classroom is thus a promising
venue for assessing growth in young children by measuring their
interactions with teachers as well as classmates. However, to date
limited studies have explored such naturalistic audio communications.
Automatic Speech Recognition (ASR) technologies provide an
opportunity for ’Early Childhood’ researchers to obtain knowledge
through automatic analysis of naturalistic classroom recordings in
measuring such interactions. For this purpose, 208 hours of audio
recordings across 48 daylong sessions are collected in a childcare
learning center in the United States using Language Environment
Analysis (LENA) devices worn by the preschool children. Approximately
29 hours of adult speech and 26 hours of child speech is
segmented using manual transcriptions provided by CRSS transcription
team. Traditional as well as End-to-End ASR models are trained
on adult/child speech data subset. Factorized Time Delay Neural
Network provides a best Word-Error-Rate (WER) of 35.05% on the
adult subset of the test set. End-to-End transformer models achieve
63.5% WER on the child subset of the test data. Next, bar plots
demonstrating the frequency of WH-question words in Science vs.
Reading activity more »
- Award ID(s):
- 1918032
- Publication Date:
- NSF-PAR ID:
- 10362771
- Journal Name:
- ACM ICMI - WoCBU-2021: Workshop on Bridging Social Sciences and AI for Understanding Child Behavior
- Page Range or eLocation-ID:
- 414 to 418
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Speech and language development are early indicators of overall analytical and learning ability in children. The preschool classroom is a rich language environment for monitoring and ensuring growth in young children by measuring their vocal interactions with teachers and classmates. Early childhood researchers are naturally interested in analyzing naturalistic vs. controlled lab recordings to measure both quality and quantity of such interactions. Unfortunately, present-day speech technologies are not capable of addressing the wide dynamic scenario of early childhood classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio streams, automated speaker diarization technology would need to be advanced to address this challenging domain for segmenting audio as well as information extraction. This study investigates an alternate Deep Learning-based diarization solution for segmenting classroom interactions of 3-5 year old children with teachers. In this context, the focus on speech-type diarization which classifies speech segments as being either from adults or children partitioned across multiple classrooms. Our proposed ResNet model achieves a best F1-score of ∼71.0% on data from two classrooms, based on dev and test sets of each classroom. Additionally, F1-scores are obtained for individual segments with corresponding speaker tags (e.g., adult vs. child), which provide knowledge formore »
-
Assessing child growth in terms of speech and language is a crucial indicator of long term learning ability and life-long progress. Since the preschool classroom provides a potent opportunity for monitoring growth in young children’s interactions, analyzing such data has come into prominence for early childhood researchers. The foremost task of any analysis of such naturalistic recordings would involve parsing and tagging the interactions between adults and young children. An automated tagging system will provide child interaction metrics and would be important for any further processing. This study investigates the language environment of 3-5 year old children using a CRSS based diarization strategy employing an i-vector-based baseline that captures adult-to-child or childto- child rapid conversational turns in a naturalistic noisy early childhood setting. We provide analysis of various loss functions and learning algorithms using Deep Neural Networks to separate child speech from adult speech. Performance is measured in terms of diarization error rate, Jaccard error rate and shows good results for tagging adult vs children’s speech. Distinction between primary and secondary child would be useful for monitoring a given child and analysis is provided for the same. Our diarization system provides insights into the direction for preprocessing and analyzing challengingmore »
-
Monitoring child development in terms of speech/language skills has a long-term impact on their overall growth. As student diversity continues to expand in US classrooms, there is a growing need to benchmark social-communication engagement, both from a teacher-student perspective, as well as student-student content. Given various challenges with direct observation, deploying speech technology will assist in extracting meaningful information for teachers. These will help teachers to identify and respond to students in need, immediately impacting their early learning and interest. This study takes a deep dive into exploring various hybrid ASR solutions for low-resource spontaneous preschool (3-5yrs) children (with & without developmental delays) speech, being involved in various activities, and interacting with teachers and peers in naturalistic classrooms. Various out-of-domain corpora over a wide and limited age range, both scripted and spontaneous were considered. Acoustic models based on factorized TDNNs infused with Attention, and both N-gram and RNN language models were considered. Results indicate that young children have significantly different/ developing articulation skills as compared to older children. Out-of-domain transcripts of interactions between young children and adults however enhance language model performance. Overall transcription of such data, including various non-linguistic markers, poses additional challenges.
-
The use of wh-words, including wh-questions and wh-clauses, can be linguistically, conceptually, and interactively challenging to preschoolers. Young children develop mastery of wh-words as they formulate and hear these words during daily interactions in contexts such as preschool classrooms. Observational approaches limit researchers' ability to comprehensively capture the classroom conversations, including wh-words. In the current study, we report the results of the first study using the automated speech recognition (ASR) system coupled with location sensors designed to quantify teachers' wh-words in the literacy activity areas of a preschool classroom. We found that the ASR system is a viable solution to automatically quantify the number of adult wh-words used in preschool classrooms. Our findings demonstrated that the most frequently used adult wh-word type was "what." Classroom adults used more wh-words during time point 1 compared to time point 2. Lastly, a child at risk for developmental delays heard more wh-words per minute than a typically developing child. Future research is warranted to further improve the efforts