The human brain is sexually dimorphic and these sex differences have shown to affect brain response to trauma. We investigated the sex differences in the tract structures by studying diffusion weighted (DW) images of 594 females and 506 males from the Human-Connectome-Project dataset. All the female and male DW images were reconstructed in the ICBM152 space using Q-Space diffeomorphic reconstruction technique and their mapped orientation distribution function images were averaged to generate the female- and male-DW-templates. The tract streamlines were generated through tractography for female and male templates and normalized to the total brain volume . The distributions of normalized tract lengths were significantly different between female- and male-templates and the female-template showed to have more longer normalized tracts compared to the male template. For the regional analysis, the templates were parcellated into sixteen regions of interests (ROI) including brain-stem, five subregions of corpus-callosum, and right and left hippocampus, thalamus, cerebellum white-matter (WM), cerebral WM, and cerebellum cortex using a FreeSurfer-based segmentation atlas. For all the ROIs, the average fractional anisotropy (0.5-5.7%) and normalized tract lengths (1.1-2.7%) were larger in female template while the average mean diffusion was larger (1.3-5.6%) in male-template. Quantifying brain connectivity by counting number of tracts passing through pairs of ROIs, showed more pairs with a higher connectivity in female-template, and one of the highest percentages of sex differences in right/left cerebellum WM/cortex connections. Our results reinforce the need to continue investigating the sex variations in axonal structure and their effects to brain trauma. 
                        more » 
                        « less   
                    
                            
                            A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century
                        
                    
    
            Abstract The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter’s properties with behavior, development, and disorders. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203524
- PAR ID:
- 10362817
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Cerebral Cortex
- Volume:
- 32
- Issue:
- 20
- ISSN:
- 1047-3211
- Format(s):
- Medium: X Size: p. 4524-4548
- Size(s):
- p. 4524-4548
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo . We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function. SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.more » « less
- 
            Diffusion-weighted magnetic resonance imaging (dMRI) allows for non-invasive, detailed examination of the white matter structures of the brain. White matter tract-specific measures based on either the diffusion tensor model (e.g. FA, ADC, and MD) or tractography (e.g. volume, streamline count or density) are often compared between groups of subjects to localize differences within the white matter. Less commonly examined is the shape of the individual white matter tracts. In this paper, we propose to use the Laplace-Beltrami (LB) spectrum as a descriptor of the shape of white matter tracts. We provide an open, automated pipeline for the computation of the LB spectrum on segmented white matter tracts and demonstrate its efficacy through machine learning classification experiments. We show that the LB spectrum allows for distinguishing subjects diagnosed with bipolar disorder from age and sex-matched healthy controls, with classification accuracy reaching 95%. We further demonstrate that the results cannot be explained by traditional measures, such as tract volume, streamline count or mean and total length. The results indicate that there is valuable information in the anatomical shape of the human white matter tracts.more » « less
- 
            Abstract Understanding the processes of axonal growth and pathfinding during cortical folding in the brain is crucial to unravel the mechanisms underlying brain disorders that disturb connectivity throughout human brain development. However, this topic remains incompletely understood, highlighting the need for further investigation. Here, we propose and evaluate a diffusion based-mechanistic model to understand how axons grow and navigate in the folding brain. To do so, a bilayer growth model simulating the brain was devised involving a thin gray matter overlying a thick white matter. Innovatively, the stochastic model of axonal growth was linked with the stress and deformation fields of the folding bilayer system. The results showed that the modulus ratio of the gray matter to the white matter and the axonal growth rate are two potentially critical parameters that significantly influence axon pathfinding in the folding brain. The model demonstrated robust predictability in identifying axonal termination points and offered a potential mechanism explaining why axons settle more in gyri (ridges) than sulci (valleys) of the brain. Importantly, the results explain how alterations in the mechanical properties of the folding system can impact the underlying connectivity patterning. This mechanistic insight not only enhances our understanding of brain connectivity development during the fetal stage but also sheds light on brain disorders characterized by linked abnormalities in cortical folds and disruptions in connectivity.more » « less
- 
            Autism spectrum disorder (ASD) is currently viewed as a disorder of cortical systems connectivity, with a heavy emphasis being on the structural integrity of white matter tracts. However, the majority of the literature to date has focused on children with ASD. Understanding the integrity of white matter tracts in adults may help reveal the nature of ASD pathology in adulthood and the potential contributors to cognitive impairment. This study examined white matter water diffusion using diffusion tensor imaging in relation to neuropsychological measures of cognition in a sample of 45 adults with ASD compared to 20 age, gender, and full‐scale‐IQ‐matched healthy volunteers. Tract‐based spatial statistics were used to assess differences in diffusion along white matter tracts between groups using permutation testing. The following neuropsychological measures of cognition were assessed: processing speed, attention vigilance, working memory, verbal learning, visual learning, reasoning and problem solving, and social cognition. Results indicated that fractional anisotropy (FA) was significantly reduced in adults with ASD in the anterior thalamic radiation (P= 0.022) and the right cingulum (P= 0.008). All neuropsychological measures were worse in the ASD group, but none of the measures significantly correlated with reduced FA in either tract in the adults with ASD or in the healthy volunteers. Together, this indicates that the tracts that are the most impacted in autism may not be (at least directly) responsible for the behavioral deficits in ASD.Autism Res2020, 13: 702–714. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryWhite matter tracts are the data cables in the brain that efficiently transfer information, and damage to these tracts could be the cause for the abnormal behaviors that are associated with autism. We found that two long‐range tracts (the anterior thalamic radiation and the cingulum) were both impaired in autism but were not directly related to the impairments in behavior. This suggests that the abnormal tracts and behavior are the effects of another underlying mechanism.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
