skip to main content

Title: A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century

The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter’s properties with behavior, development, and disorders.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Cerebral Cortex
Medium: X Size: p. 4524-4548
["p. 4524-4548"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo . We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function. SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease. 
    more » « less
  2. Lay Summary

    White matter tracts are the data cables in the brain that efficiently transfer information, and damage to these tracts could be the cause for the abnormal behaviors that are associated with autism. We found that two long‐range tracts (the anterior thalamic radiation and the cingulum) were both impaired in autism but were not directly related to the impairments in behavior. This suggests that the abnormal tracts and behavior are the effects of another underlying mechanism.

    more » « less
  3. Abstract

    White matter (WM) microstructure, as determined by diffusion tensor imaging (DTI), is increasingly recognized as an important determinant of cognitive function and is also altered in neuropsychiatric disorders. Little is known about genetic and environmental influences on WM microstructure, especially in early childhood, an important period for cognitive development and risk for psychiatric disorders. We studied the heritability of DTI parameters, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) along 34 tracts, including 10 bilateral fiber pathways and the respective subdivision, using quantitative tractography in a longitudinal sample of healthy children at 1 year (N = 215) and 2 years (N = 165) of age. We found that heritabilities for whole brain AD, RD, and FA were 0.48, 0.69, and 0.72 at age 1, and 0.59, 0.77, and 0.76 at age 2 and that mean heritabilities of tract‐averaged AD, RD, and FA for individual bundles were moderate (over 0.4). However, the heritability of DTI change between 1 and 2 years of age was not significant for most tracts. We also demonstrated that point‐wise heritability tended to be significant in the central portions of the tracts and was generally spatially consistent at ages 1 and 2 years. These results, especially when compared to heritability patterns in neonates, indicate that the heritability of WM microstructure is dynamic in early childhood and likely reflect heterogeneous maturation of WM tracts and differential genetic and environmental influences on maturation patterns.

    more » « less
  4. Diffusion-weighted magnetic resonance imaging (dMRI) allows for non-invasive, detailed examination of the white matter structures of the brain. White matter tract-specific measures based on either the diffusion tensor model (e.g. FA, ADC, and MD) or tractography (e.g. volume, streamline count or density) are often compared between groups of subjects to localize differences within the white matter. Less commonly examined is the shape of the individual white matter tracts. In this paper, we propose to use the Laplace-Beltrami (LB) spectrum as a descriptor of the shape of white matter tracts. We provide an open, automated pipeline for the computation of the LB spectrum on segmented white matter tracts and demonstrate its efficacy through machine learning classification experiments. We show that the LB spectrum allows for distinguishing subjects diagnosed with bipolar disorder from age and sex-matched healthy controls, with classification accuracy reaching 95%. We further demonstrate that the results cannot be explained by traditional measures, such as tract volume, streamline count or mean and total length. The results indicate that there is valuable information in the anatomical shape of the human white matter tracts. 
    more » « less
  5. Abstract

    How the brain's white‐matter anatomy constrains brain activity is an open question that might give insights into the mechanisms that underlie mental disorders such as schizophrenia. Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder with an extremely high risk for psychosis providing a test case to study developmental aspects of schizophrenia. In this study, we used principles from network control theory to probe the implications of aberrant structural connectivity for the brain's functional dynamics in 22q11DS. We retrieved brain states from resting‐state functional magnetic resonance images of 78 patients with 22q11DS and 85 healthy controls. Then, we compared them in terms of persistence control energy; that is, the control energy that would be required to persist in each of these states based on individual structural connectivity and a dynamic model. Persistence control energy was altered in a broad pattern of brain states including both energetically more demanding and less demanding brain states in 22q11DS. Further, we found a negative relationship between persistence control energy and resting‐state activation time, which suggests that the brain reduces energy by spending less time in energetically demanding brain states. In patients with 22q11DS, this behavior was less pronounced, suggesting a deficiency in the ability to reduce energy through brain activation. In summary, our results provide initial insights into the functional implications of altered structural connectivity in 22q11DS, which might improve our understanding of the mechanisms underlying the disease.

    more » « less