Evolutionary feedbacks occur when evolution in one generation alters the environment experienced by subsequent generations and are an expected result of indirect genetic effects (IGEs). Hypotheses abound for the role of evolutionary feedbacks in climate change, agriculture, community dynamics, population persistence, social interactions, the genetic basis of evolution, and more, but evolutionary feedbacks have rarely been directly measured experimentally, leaving open questions about how feedbacks influence evolution. Using experimental evolution, we manipulated the social environment in which aggression was expressed and selected in fruit fly (Drosophila melanogaster) populations to allow or limit feedbacks. We selected for increased male–male aggression while allowing either positive, negative, or no feedbacks, alongside unselected controls. We show that populations undergoing negative feedbacks had the weakest evolutionary changes in aggression, while populations undergoing positive evolutionary feedbacks evolved supernormal aggression. Further, the underlying social dynamics evolved only in the negative feedbacks treatment. Our results demonstrate that IGE-mediated evolutionary feedbacks can alter the rate and pattern of behavioral evolution.
more »
« less
The Indirect Genetic Effect Interaction Coefficient ψ : Theoretically Essential and Empirically Neglected
Abstract The interaction effect coefficient ψ has been a much-discussed, fundamental parameter of indirect genetic effect (IGE) models since its formal mathematical description in 1997. The coefficient simultaneously describes the form of changes in trait expression caused by genes in the social environment and predicts the evolutionary consequences of those IGEs. Here, we report a striking mismatch between theoretical emphasis on ψ and its usage in empirical studies. Surveying all IGE research, we find that the coefficient ψ has not been equivalently conceptualized across studies. Several issues related to its proper empirical measurement have recently been raised, and these may severely distort interpretations about the evolutionary consequences of IGEs. We provide practical advice on avoiding such pitfalls. The majority of empirical IGE studies use an alternative variance-partitioning approach rooted in well-established statistical quantitative genetics, but several hundred estimates of ψ (from 15 studies) have been published. A significant majority are positive. In addition, IGEs with feedback, that is, involving the same trait in both interacting partners, are far more likely to be positive and of greater magnitude. Although potentially challenging to measure without bias, ψ has critically-developed theoretical underpinnings that provide unique advantages for empirical work. We advocate for a shift in perspective for empirical work, from ψ as a description of IGEs, to ψ as a robust predictor of evolutionary change. Approaches that “run evolution forward” can take advantage of ψ to provide falsifiable predictions about specific trait interactions, providing much-needed insight into the evolutionary consequences of IGEs.
more »
« less
- Award ID(s):
- 1855962
- PAR ID:
- 10362818
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Heredity
- Volume:
- 113
- Issue:
- 1
- ISSN:
- 0022-1503
- Format(s):
- Medium: X Size: p. 79-90
- Size(s):
- p. 79-90
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the interplay between ecological processes and the evolutionary dynamics of quantitative traits in natural systems remains a major challenge. Two main theoretical frameworks are used to address this question, adaptive dynamics and quantitative genetics, both of which have strengths and limitations and are often used by distinct research communities to address different questions. In order to make progress, new theoretical developments are needed that integrate these approaches and strengthen the link to empirical data. Here, we discuss a novel theoretical framework that bridges the gap between quantitative genetics and adaptive dynamics approaches. ‘Oligomorphic dynamics’ can be used to analyse eco‐evolutionary dynamics across different time scales and extends quantitative genetics theory to account for multimodal trait distributions, the dynamical nature of genetic variance, the potential for disruptive selection due to ecological feedbacks, and the non‐normal or skewed trait distributions encountered in nature. Oligomorphic dynamics explicitly takes into account the effect of environmental feedback, such as frequency‐ and density‐dependent selection, on the dynamics of multi‐modal trait distributions and we argue it has the potential to facilitate a much tighter integration between eco‐evolutionary theory and empirical data.more » « less
-
Eaton, Deren (Ed.)Abstract Color polymorphism—two or more heritable color phenotypes maintained within a single breeding population—is an extreme type of intraspecific diversity widespread across the tree of life. Color polymorphism is hypothesized to be an engine for speciation, where morph loss or divergence between distinct color morphs within a species results in the rapid evolution of new lineages, and thus, color polymorphic lineages are expected to display elevated diversification rates. Multiple species in the lizard family Lacertidae are color polymorphic, making them an ideal group to investigate the evolutionary history of this trait and its influence on macroevolution. Here, we produce a comprehensive species-level phylogeny of the lizard family Lacertidae to reconstruct the evolutionary history of color polymorphism and test if color polymorphism has been a driver of diversification. Accounting for phylogenetic uncertainty with multiple phylogenies and simulation studies, we estimate an ancient origin of color polymorphism (111 Ma) within the Lacertini tribe (subfamily Lacertinae). Color polymorphism most likely evolved few times in the Lacertidae and has been lost at a much faster rate than gained. Evolutionary transitions to color polymorphism are associated with shifts in increased net diversification rate in this family of lizards. Taken together, our empirical results support long-standing theoretical expectations that color polymorphism is a driver of diversification.[Color polymorphism; Lacertidae; state-dependent speciation extinction models; trait-dependent diversification.]more » « less
-
Social behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how develop- mental IGEs, which describe the effects of a prior social partner’s geno- type on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be esti- mated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the ex- periment, we measured aggressive behavior in 15 genotypic pairings (n p 600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found con- textual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner’s genotype on the focal individual’s day 2 behavior depended on the genotypic iden- tity of both the day 1 partner and the focal male. Importantly, the devel- opmental IGEs in our system produced fundamentally different dynam- ics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence dem- onstrating developmental IGEs, a first step toward incorporating de- velopmental IGEs into our understanding of behavioral evolution.more » « less
-
Macdonald, S (Ed.)Abstract Quantitative genetics in Caenorhabditis elegans seeks to identify naturally segregating genetic variants that underlie complex traits. Genome-wide association studies scan the genome for individual genetic variants that are significantly correlated with phenotypic variation in a population, or quantitative trait loci. Genome-wide association studies are a popular choice for quantitative genetic analyses because the quantitative trait loci that are discovered segregate in natural populations. Despite numerous successful mapping experiments, the empirical performance of genome-wide association study has not, to date, been formally evaluated in C. elegans. We developed an open-source genome-wide association study pipeline called NemaScan and used a simulation-based approach to provide benchmarks of mapping performance in collections of wild C. elegans strains. Simulated trait heritability and complexity determined the spectrum of quantitative trait loci detected by genome-wide association studies. Power to detect smaller-effect quantitative trait loci increased with the number of strains sampled from the C. elegans Natural Diversity Resource. Population structure was a major driver of variation in mapping performance, with populations shaped by recent selection exhibiting significantly lower false discovery rates than populations composed of more divergent strains. We also recapitulated previous genome-wide association studies of experimentally validated quantitative trait variants. Our simulation-based evaluation of performance provides the community with critical context to pursue quantitative genetic studies using the C. elegans Natural Diversity Resource to elucidate the genetic basis of complex traits in C. elegans natural populations.more » « less
An official website of the United States government
