Chemical reduction of pentacene (C22H14,
- PAR ID:
- 10362869
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 9
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Chemical reduction of highly-twisted 9,10,11,20,21,22-hexaphenyltetrabenzo[a,c,l,n]pentacene (C74H46, 1) was investigated using Li and Cs metals as the reducing agents. The Cs-induced reduction of 1 in the presence of 18-crown-6 ether enabled the isolation of a solvent-separated ion pair (SSIP) with a “naked” monoanion. Upon reduction with Li metal, a double reductive dehydrogenative annulation of 1 was observed to afford a new C74H422– dianion. The latter was shown to undergo a further reduction to C74H424– without additional core transformation. All products were characterized by single-crystal X-ray diffraction and spectroscopic methods. Subsequent in-depth theoretical analysis of one vs. two and four electron uptake by 1 provided insights into how the changes of geometry, aromaticity and charge facilitated the core transformation of twistacene observed upon two-fold reduction. These experimental and theoretical results pave the way to understanding of the reduction-induced core transformations of highly twisted and strained π-systems.more » « less
-
Abstract Mono‐ and dianions of 2‐
tert ‐butyl‐3a2‐azapentabenzo[bc ,ef ,hi ,kl ,no ]corannulene (1 a ) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}(1 a 2−)2], revealed the presence of a naked dianion. In contrast, controlled reaction of1 a with Cs allowed the isolation of singly and doubly reduced forms of1 a , both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}(1 a −)]⋅THF, asymmetric binding of the Cs+ion to the concave surface of1 a −is observed, whereas in [{Cs+(18‐crown‐6)}2(1 a 2−)], two Cs+ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules. -
Abstract Mono‐ and dianions of 2‐
tert ‐butyl‐3a2‐azapentabenzo[bc ,ef ,hi ,kl ,no ]corannulene (1 a ) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}(1 a 2−)2], revealed the presence of a naked dianion. In contrast, controlled reaction of1 a with Cs allowed the isolation of singly and doubly reduced forms of1 a , both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}(1 a −)]⋅THF, asymmetric binding of the Cs+ion to the concave surface of1 a −is observed, whereas in [{Cs+(18‐crown‐6)}2(1 a 2−)], two Cs+ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules. -
Abstract The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (
1 ) affords the first examples of dianionic 10‐membered bora‐crown ethers (2 –5 ), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4 , which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of2 –5 . These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate. -
Abstract The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (
1 ) affords the first examples of dianionic 10‐membered bora‐crown ethers (2 –5 ), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4 , which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of2 –5 . These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.