A typical subduction of an oceanic plate beneath a continent is expected to be accompanied by arc volcanoes along the convergent margin. However, subduction of the Cocos plate at the Middle American subduction system has resulted in an uneven distribution of magmatism/volcanism along strike. Here we construct a new three-dimensional shear-wave velocity model of the entire Middle American subduction system, using full-wave ambient noise tomography. Our model reveals significant variations of the oceanic plates along strike and down dip, in correspondence with either weakened or broken slabs after subduction. The northern and southern segments of the Cocos plate, including the Mexican flat slab subduction, are well imaged as high-velocity features, where a low-velocity mantle wedge exists and demonstrate a strong correlation with the arc volcanoes. Subduction of the central Cocos plate encounters a thick high-velocity feature beneath North America, which hinders the formation of a typical low-velocity mantle wedge and arc volcanoes. We suggest that the presence of slab tearing at both edges of the Mexican flat slab has been modifying the mantle flows, resulting in the unusual arc volcanism.
more »
« less
Three‐Dimensional Variation of the Slab Geometry Within the South American Subduction System
Abstract Subduction of the Nazca plate results in the uneven distributions of earthquakes and arc volcanoes along the South America's western margin. Here, we construct a high‐resolution shear‐wave velocity model from immediately offshore to the backarc in South America, using advanced full‐wave ambient noise tomography. Our new model confirms and provides further constraints on three major features, including (a) extensive low‐velocity anomalies within the continental crust, (b) two high‐velocity flat slab segments located beneath southern Peru and central Chile, and (c) complex slab geometry at flat‐to‐normal transitional subduction. The flat slab segments roughly correlate with the volcanic gaps but not with the seismicity gaps. We suggest that variations of slab geometry along strike and down dip have significantly modified the flow patterns within the mantle wedge. Subduction of oceanic ridges has altered the slab dehydration processes, which can influence the distribution of arc volcanism and the occurrence of intermediate‐depth earthquakes.
more »
« less
- Award ID(s):
- 1751974
- PAR ID:
- 10362900
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 2
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The determination of the temperature in and above the slab in subduction zones, using models where the top of the slab is precisely known, is important to test hypotheses regarding the causes of arc volcanism and intermediate-depth seismicity. While 2D and 3D models can predict the thermal structure with high precision for fixed slab geometries, a number of regions are characterized by relatively large geometrical changes over time. Examples include the flat slab segments in South America that evolved from more steeply dipping geometries to the present day flat slab geometry. We devise, implement, and test a numerical approach to model the thermal evolution of a subduction zone with prescribed changes in slab geometry over time. Our numerical model approximates the subduction zone geometry by employing time dependent deformation of a Bézier spline that is used as the slab interface in a finite element discretization of the Stokes and heat equations. We implement the numerical model using the FEniCS open source finite element suite and describe the means by which we compute approximations of the subduction zone velocity, temperature, and pressure fields. We compute and compare the 3D time evolving numerical model with its 2D analogy at cross-sections for slabs that evolve to the present-day structure of a flat segment of the subducting Nazca plate.more » « less
-
Abstract This study integrates data from all broadband seismic stations in Alaska and northwestern Canada in 1999–2022 to construct a shear‐wave velocity model for south‐central Alaska and northwesternmost Canada, using ambient noise wave propagation simulation and inversion. Our model reveals three key features, including (a) the presence of the subducting Yakutat slab with apparent velocity reductions near the trench and within its flat segment, (b) two slab segments beneath the Wrangell volcanic field, differing in steepness, depth, and seismic velocity, and aligning spatially with the northwestern and southeastern volcano clusters, and (c) the existence of slab windows between the Yakutat and Wrangell slabs and between the northwestern and southeastern portions of the Wrangell slab. Our findings reinforce that the Wrangell volcanoes are predominantly influenced by subduction‐related magmatism. Furthermore, the two slab windows could have induced asthenospheric upwelling, contributing to the volcanism in the Wrangell clustered volcanoes.more » « less
-
Abstract The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism.more » « less
-
Abstract The Alaska Peninsula has a long history of plate subduction with along‐arc variations in volcanic eruption styles and geochemistry. However, the sub‐arc melting processes that feed these volcanoes are unclear. The Alaska slab morphology below 200 km depth remains debated due to limited seismic data and thus low tomography resolution in this region. Here we utilize the newly available regional and teleseismic data to build 3‐D high‐resolutionVPandVSmodels to 660 km depth. We find that the high‐velocity Pacific Plate subducts to the bottom of the mantle transition zone (MTZ) with complex deformation and gaps. In the southwest, we observe a wide gap in the high‐velocity slab at 200–500 km depths. Toward the northeast, the slab becomes more continuous extending to the MTZ with a few holes below 200 km. We interpret these gaps as a slab tear that coincides with the subducted ancient Kula‐Pacific Ridge. We also invert for 3‐DVPandVP/VSmodels to 200 km depth with higher resolution and find strong along‐strike changes in slab dehydration and sub‐arc melting, indicated by lowVPand highVP/VSanomalies. Slab dehydration and sub‐arc melting are most extensive below the Pavlof and Shumagin segments in the southwest, becoming limited below the Chignik and Chirikof segments in the northeast, and extensive again beneath the Kodiak segment further to the northeast. We propose that the variations of slab hydration at the outer rise significantly influence slab dehydration at greater depths and further control sub‐arc melting beneath the Alaska Peninsula.more » « less
An official website of the United States government
