skip to main content


Title: In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals**
Abstract

Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonicShewanella oneidensiscultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonicS. oneidensiselectrophysiology using simplein situspectroscopy.

 
more » « less
Award ID(s):
1720595
NSF-PAR ID:
10362953
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
9
Issue:
3
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacteriumShewanella oneidensisthat enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) fromS. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.

     
    more » « less
  2. Buan, Nicole R. (Ed.)
    ABSTRACT

    Extracellular electron transfer is a process by which bacterial cells can exchange electrons with a redox-active material located outside of the cell. InShewanella oneidensis, this process is natively used to facilitate respiration using extracellular electron acceptors such as Fe(III) or an anode. Previously, it was demonstrated that this process can be used to drive the microbial electrosynthesis (MES) of 2,3-butanediol (2,3-BDO) inS. oneidensisexogenously expressing butanediol dehydrogenase (BDH). Electrons taken into the cell from a cathode are used to generate NADH, which in turn is used to reduce acetoin to 2,3-BDO via BDH. However, generating NADH via electron uptake from a cathode is energetically unfavorable, so NADH dehydrogenases couple the reaction to proton motive force. We therefore need to maintain the proton gradient across the membrane to sustain NADH production. This work explores accomplishing this task by bidirectional electron transfer, where electrons provided by the cathode go to both NADH formation and oxygen (O2) reduction by oxidases. We show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical system (BES), and the translocation of protons across the membrane during O2reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high levels of dissolved oxygen in this system. In an aerated BES, O2molecules react with the strong reductant (cathode) to form reactive oxygen species, resulting in cell death.

    IMPORTANCE

    Microbial electrosynthesis (MES) is increasingly employed for the generation of specialty chemicals, such as biofuels, bioplastics, and cancer therapeutics. For these systems to be viable for industrial scale-up, it is important to understand the energetic requirements of the bacteria to mitigate unnecessary costs. This work demonstrates sustained production of an industrially relevant chemical driven by a cathode. Additionally, it optimizes a previously published system by removing any requirement for phototrophic energy, thereby removing the additional cost of providing a light source. We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical systems, offering insight to future researchers aiming to work in an anaerobic environment. These studies provide insight into both the thermodynamics of electrosynthesis and the importance of the bioelectrochemical systems’ design.

     
    more » « less
  3. Abstract

    Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic–abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2‐hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current‐producing bacteriumShewanella oneidensisMR‐1, this material produces a 178‐fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin‐film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.

     
    more » « less
  4. Significance

    Metabolic engineering benefits from the tunable and tightly controlled transformations afforded by biological systems. However, these reactions have generally been limited to naturally occurring pathways and products. In this work, we coopt metabolic electron transfer fromShewanella oneidensisto control the activity of an exogenous metal catalyst in an abiotic reaction scheme: atom-transfer radical polymerization. In the presence ofS. oneidensis, polymerizations exhibited well-defined kinetics and yielded polymers with controlled molecular weights and low polydispersities. Additionally, polymerization activity was dependent on electroactive metabolism and specific electron transport proteins, both of which provide handles to control material synthesis. This work serves as a proof-of-principle toward expanding the scope of reactions available to metabolic engineers to include previously discovered transition-metal–catalyzed reactions.

     
    more » « less
  5. Abstract

    Some microbes can capture energy through redox reactions with electron flow to solid-phase electron acceptors, such as metal-oxides or poised electrodes, via extracellular electron transfer (EET). While diverse oxide minerals, exhibiting different surface redox potentials, are widely distributed on Earth, little is known about how microbes sense and use the minerals. Here we show electrochemical, metabolic, and transcriptional responses of EET-active microbial communities established on poised electrodes to changes in the surface redox potentials (as electron acceptors) and surrounding substrates (as electron donors). Combination of genome-centric stimulus-induced metatranscriptomics and metabolic pathway investigation revealed that nine Geobacter/Pelobacter microbes performed EET activity differently according to their preferable surface potentials and substrates. While the Geobacter/Pelobacter microbes coded numerous numbers of multi-heme c-type cytochromes and conductive e-pili, wide variations in gene expression were seen in response to altering surrounding substrates and surface potentials, accelerating EET via poised electrode or limiting EET via an open circuit system. These flexible responses suggest that a wide variety of EET-active microbes utilizing diverse EET mechanisms may work together to provide such EET-active communities with an impressive ability to handle major changes in surface potential and carbon source availability.

     
    more » « less