skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals**
Abstract Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonicShewanella oneidensiscultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonicS. oneidensiselectrophysiology using simplein situspectroscopy.  more » « less
Award ID(s):
1720595
PAR ID:
10362953
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
9
Issue:
3
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacteriumShewanella oneidensisthat enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) fromS. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements. 
    more » « less
  2. Significance Metabolic engineering benefits from the tunable and tightly controlled transformations afforded by biological systems. However, these reactions have generally been limited to naturally occurring pathways and products. In this work, we coopt metabolic electron transfer fromShewanella oneidensisto control the activity of an exogenous metal catalyst in an abiotic reaction scheme: atom-transfer radical polymerization. In the presence ofS. oneidensis, polymerizations exhibited well-defined kinetics and yielded polymers with controlled molecular weights and low polydispersities. Additionally, polymerization activity was dependent on electroactive metabolism and specific electron transport proteins, both of which provide handles to control material synthesis. This work serves as a proof-of-principle toward expanding the scope of reactions available to metabolic engineers to include previously discovered transition-metal–catalyzed reactions. 
    more » « less
  3. A general method is developed for removal of native nonpolar oleate ligands from colloidal metal oxide nanocrystals of varying morphologies and compositions. Ligand stripping occurs by phase transfer into potassium hydroxide solution, yielding stable aqueous dispersions with little nanocrystal aggregation and without significant changes to the nanomaterials’ physical or chemical properties. This method enables facile fabrication of conductive films of ligand-free nanocrystals. 
    more » « less
  4. Abstract Microbial respiration via extracellular electron transfer (EET) drives several globally-important environmental processes and has applications in bioenergy, bioremediation, and bioelectronics.Geobacter sulfurreducensproduce micrometer-long cytochrome nanowires for long-range (>10 µm) EET, but also require transmembrane porin-cytochrome complexes (PCCs), which can only perform EET on the cell surface. It was unknown why cells performing long-range EET need both PCCs and nanowires. Using Om(abc)B and OmcS as a model PCC and nanowire, respectively, for EET to Fe(III), we show that PCCs and nanowires form sequential, independent EET pathways where PCCs first kickstart EET and provide energy crucial for nanowire synthesis, and then nanowires perform long-range EET. Our model explains why both PCCs and nanowires are necessary. To understand the underlying EET mechanism, we purified native Om(ab)B and OmcB and found high excitonic coupling among hemes. Their midpoint reduction potentials (-182, -167 mV, respectively) are tuned for efficient electron transport. Additionally, OmcB transfers electrons to Fe(III) ~5 times more efficiently than OmcS. Our work suggests that the metabolic trade-off between PCCs and nanowires results from efficient proteome allocation. Notably, PCCs are widespread in environmentally-important bacteria and co-evolved with OmcS nanowires. This previously-undescribed nanowire synthesis strategy could accelerate EET in diverse microbes and environments. 
    more » « less
  5. Abstract Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein‐encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET‐capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost. 
    more » « less