Abstract Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences,in vivogenomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained onin vitroTF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific,in vivobinding profiles. Conversely, deep learning models, trained onin vivoTF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models ofin vitroandin vivoTF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinitiesde-novofrom deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diversein vitroassays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant ofin vivobinding, suggest that deep learning models ofin vivobinding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughputin silicoexperiments to explore the influence of sequence context and variation on both intrinsic affinity andin vivooccupancy.
more »
« less
Rational Design and Identification of Harmine‐Inspired, N ‐Heterocyclic DYRK1A Inhibitors Employing a Functional Genomic In Vivo Drosophila Model System**
Abstract Deregulation of dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) plays a significant role in developmental brain defects, early‐onset neurodegeneration, neuronal cell loss, dementia, and several types of cancer. Herein, we report the discovery of three new classes ofN‐heterocyclic DYRK1A inhibitors based on the potent, yet toxic kinase inhibitors, harmine and harmol. An initial in vitro evaluation of the small molecule library assembled revealed that the core heterocyclic motifs benzofuranones, oxindoles, and pyrrolones, showed statistically significant DYRK1A inhibition. Further, the utilization of a low cost, high‐throughput functional genomic in vivo model system to identify small molecule inhibitors that normalizeDYRK1Aoverexpression phenotypes is described. This in vivo assay substantiated the in vitro results, and the resulting correspondence validates generated classes as architectural motifs that serve as potential DYRK1A inhibitors. Further expansion and analysis of these core compound structures will allow discovery of safe, more effective chemical inhibitors of DYRK1A to ameliorate phenotypes caused by DYRK1A overexpression.
more »
« less
- Award ID(s):
- 1956170
- PAR ID:
- 10362969
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemMedChem
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1860-7179
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is significant interest in approaches to the treatment of bacterial infections that block virulence without creating selective pressures that lead to resistance. Here, we report the development of an “anti‐virulence” strategy that exploits the activity of potent synthetic inhibitors of quorum sensing (QS) inStaphylococcus aureus. We identify peptide‐based inhibitors of QS that are resistant to sequestration or degradation by components of murine tissue and demonstrate that encapsulation of a lead inhibitor in degradable polymer microparticles provides materials that substantially inhibit QSin vitro. Using a murine abscess model, we show that this inhibitor attenuates methicillin‐resistantS. aureus(MRSA) skin infectionsin vivo, and that sustained release of the inhibitor from microparticles significantly improved outcomes compared to mice that received a single‐dose bolus. Our results present an effective and modular approach to controlling bacterial virulencein vivoand could advance the development of new strategies for skin infection control.more » « less
-
Dunman, Paul (Ed.)ABSTRACT The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitro . Chloracidobacterium thermophilum PilB ( Ct PilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized Ct PilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro . Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems. IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.more » « less
-
Alspaugh, J Andrew (Ed.)ABSTRACT Systemic infections byCandidaspp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, fromCandida albicansis a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed anin vitronucleotidase-coupled malachite-green-based high throughput assay for purifiedC. albicansCho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising averageZ’ score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects againstC. albicanscells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disruptingin vivoCho1 function by inducing phenotypes consistent with thecho1∆∆mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with aKiof 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCEFungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with aKivalue of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.more » « less
-
Genetic dissection of cis -regulatory control of ZmWUSCHEL1 expression by type B RESPONSE REGULATORSAbstract Mutations in cis-regulatory regions play an important role in the domestication and improvement of crops by altering gene expression. However, assessing the in vivo impact of cis-regulatory elements (CREs) on transcriptional regulation and phenotypic outcomes remains challenging. Previously, we showed that the dominant Barren inflorescence3 (Bif3) mutant of maize (Zea mays) contains a duplicated copy of the homeobox transcription factor gene ZmWUSCHEL1 (ZmWUS1), named ZmWUS1-B. ZmWUS1-B is controlled by a spontaneously generated novel promoter region that dramatically increases its expression and alters patterning and development of young ears. Overexpression of ZmWUS1-B is caused by a unique enhancer region containing multimerized binding sites for type B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. To better understand how the enhancer increases the expression of ZmWUS1 in vivo, we specifically targeted the ZmWUS1-B enhancer region by CRISPR-Cas9-mediated editing. A series of deletion events with different numbers of type B RR DNA binding motifs (AGATAT) enabled us to determine how the number of AGATAT motifs impacts in vivo expression of ZmWUS1-B and consequently ear development. In combination with dual-luciferase assays in maize protoplasts, our analysis reveals that AGATAT motifs have an additive effect on ZmWUS1-B expression, while the distance separating AGATAT motifs does not appear to have a meaningful impact, indicating that the enhancer activity derives from the sum of individual CREs. These results also suggest that in maize inflorescence development, there is a threshold of buffering capacity for ZmWUS1 overexpression.more » « less
An official website of the United States government
