Abstract BackgroundPrevious social determinants of health (SDoH) studies on laryngeal cancer (LC) have assessed individual factors of socioeconomic status and race/ethnicity but seldom investigate a wider breadth of SDoH-factors for their effects in the real-world. This study aims to delineate how a wider array of SDoH-vulnerabilities interactively associates with LC-disparities. MethodsThis retrospective cohort study assessed 74,495 LC-patients between 1975 and 2017 from the Surveillance-Epidemiology-End Results (SEER) database using the Social Vulnerability Index (SVI) from the CDC, total SDoH-vulnerability from 15 SDoH variables across specific vulnerabilities of socioeconomic status, minority-language status, household composition, and infrastructure/housing and transportation, which were measured across US counties. Univariate linear and logistic regressions were performed on length of care/follow-up and survival, staging, and treatment across SVI scores. ResultsSurvival time dropped significantly by 34.37% (from 72.83 to 47.80 months), and surveillance time decreased by 28.09% (from 80.99 to 58.24 months) with increasing overall social vulnerability, alongside advanced staging (OR 1.15; 95%CI 1.13–1.16), increased chemotherapy (OR 1.13; 95%CI 1.11–1.14), decreased surgical resection (OR 0.91; 95%CI 0.90–0.92), and decreased radiotherapy (OR 0.97; 95%CI 0.96–0.99). DiscussionIn this SDoH-study of LCs, detrimental care and prognostic trends were observed with increasing overall SDoH-vulnerability.
more »
« less
Demonstrating a systems approach for integrating disparate data streams to inform decisions on children’s environmental health
Abstract BackgroundThe use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners. MethodsA conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state. ResultsData driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment. ConclusionsThis analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children’s environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.
more »
« less
- Award ID(s):
- 1937012
- PAR ID:
- 10362986
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- BMC Public Health
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1471-2458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Midlife non-Hispanic white mortality in the United States is rising, particularly in small metro and rural counties. This article responds to calls for county-level studies. We examine social determinants of morbidity and mortality among adult non-Hispanic whites in Yavapai County, Arizona, as part of an integrative study. We report overall mortality trends in Yavapai County using CDC Wonder data and then examine social determinants of reported physical health and mental distress in Yavapai County data using 6 years (2011–2016) of the Arizona Behavioral Risk Factor Surveillance System (BRFSS). The BRFSS includes 1,024 non-Hispanic white respondents aged 25–64. We also present data from the recently established Yavapai County Overdose Fatality Review Board (YCOFRB). Mortality trends indicate that suicide and drug and alcoholrelated mortality have all increased since 1999. These increases affect all 5-year age groups from 25 to 64 and both men and women. BRFSS data show that low education and unemployment, but not number of children or home ownership, are significantly associated with worse reported health and frequent mental distress in multivariate analyses. The YCOFRB point to the importance of homelessness and mental health. The mortality crisis in Yavapai County is not restricted to midlife or to drug-related deaths. The unemployed and those with low levels of education are particularly at risk. There is a need for integrative approaches that use local data to elucidate social determinants of morbidity and mortality and to reveal structural determinants.more » « less
-
Abstract ObjectiveThe current paper examines the intersection between social vulnerability, individual risk, and social/psychological resources with adult suicidality during the COVID‐19 pandemic. MethodData come from a national sample (n = 10,368) of U.S. adults. Using an online platform, information was gathered during the third week of March 2020, and post‐stratification weighted to proportionally represent the U.S. population in terms of age, gender, race/ethnicity, income, and geography. ResultsNearly 15 percent of sampled respondents were categorized as high risk, scoring 7+ on the Suicide Behaviors Questionnaire‐Revised (SBQ‐R). This level of risk varied across social vulnerability groupings: Blacks, Native Americans, Hispanics, families with children, unmarried, and younger respondents reported higher SBQ‐R scores than their counterparts (p < .000). Regression results confirm these bivariate differences and also reveal that risk factors (food insecurity, physical symptoms, and CES‐D symptomatology) are positive and significantly related to suicidality (p < .000). Additionally, resource measures are significant and negatively related to suicidality (p < .000). ConclusionsThese results provide some insight on the impact COVID‐19 is having on the general U.S. population. Practitioners should be prepared for what will likely be a significant mental health fall‐out in the months and years ahead.more » « less
-
Guided mainly by the social vulnerability perspective and life course perspective, this study examined age patterns of financial preparedness for emergencies and how they were contextualized by vulnerabilities at the individual and community levels. We matched data from the Federal Emergency Management Agency 2018 National Household Survey and 15 indicators of the Social Vulnerability Index at the county level. Two-level logistic regressions were conducted with the working sample, which included 4,623 respondents from 958 counties. The results showed that adults aged 18 to 44 were more likely than those aged 65 to 74 to set aside money for emergencies among Hispanics, those with minor children in the household, and in communities with higher levels of poverty, higher percentages of minorities, and higher percentages of no vehicles, but less likely to do so among the White and those with insurance. The findings were discussed within a multilevel layered vulnerability framework.more » « less
-
Turner, Richard (Ed.)Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines.more » « less
An official website of the United States government
