Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyzemore »
Investigating associations between COVID-19 mortality and population-level health and socioeconomic indicators in the United States: A modeling study
Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents more »
- Editors:
- Turner, Richard
- Award ID(s):
- 2027369
- Publication Date:
- NSF-PAR ID:
- 10299455
- Journal Name:
- PLOS Medicine
- Volume:
- 18
- Issue:
- 7
- Page Range or eLocation-ID:
- e1003693
- ISSN:
- 1549-1676
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective: To identify differences in short-term outcomes of patients with coronavirus disease 2019 (COVID-19) according to various racial/ethnic groups.Design: Analysis of Cerner de-identified COVID-19 dataset.Setting: A total of 62 health care facilities.Participants: The cohort included 49,277 adult COVID-19 patients who were hospitalized from December 1, 2019 to November 13, 2020.Methods: We compared patients’ age, gender, individual components of Charlson and Elixhauser comorbidities, medical complications, use of do-not-resuscitate, use of palliative care, and socioeconomic status between various racial and/or ethnic groups. We further compared the rates of in-hospital mortality and non-routine discharges between various racial and/or ethnic groups.Main Outcome Measures: Themore »
-
This study explored how population mobility flows form commuting networks across US counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative binomial regression models to estimate the impact of network COVID-19 exposure on county confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate the causal effect of network exposure. Results showed that commuting networks matter for COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors. Different local racial and ethnic concentrations are also associated with unequal outcomes. These findings suggest that commuting is an important causal mechanism in themore »
-
We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impactsmore »
-
Adrish, Muhammad (Ed.)Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data.more »