skip to main content


Title: Constructing retrospective gridded daily weather data for agro‐hydrological applications in Oklahoma
Abstract

Regional, automated meteorological networks, such as the Oklahoma Mesonet can potentially provide high quality forcing data for generating gridded surfaces, but proven methods of interpolating weather variables between the station locations are needed. We compared two interpolation methods, ordinary kriging (OK) and empirical Bayesian kriging (EBK), with and without using long‐term climate imprints (CI), for creating spatially continuous, daily weather datasets. Daily meteorological variables (maximum and minimum temperature, solar radiation, and precipitation) from the Oklahoma Mesonet for the period 1997–2014 were interpolated using geoprocessing tools in ArcGIS. Cross‐validation was used for evaluation of interpolation methods, with 90% of sites chosen randomly for the training set and the remaining 10% left for validation. For all interpolation approaches, cross‐validation showed coefficient of determination (R2) values of .99 and .98 for daily maximum and minimum air temperatures, with mean absolute error (MAE) ranging from ±0.45–0.50 °C for maximum temperature and ±0.77–0.80 °C for minimum temperature. Likewise, for daily solar radiation,R2values of .94 and .93 showed overall good prediction accuracy with MAE values 1.00 and 1.01 MJ m–2 d–1for EBK and OK, respectively. However, for rainfall, all methods yieldedR2values ≤.67, suggesting a need for more effective interpolation method. Based on its lower computational time and lower input data requirement, OK appears preferable to the other approaches tested here to provide the daily weather data for gridded models in Oklahoma and other regions with similar monitoring networks.

 
more » « less
NSF-PAR ID:
10363038
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Agrosystems, Geosciences & Environment
Volume:
3
Issue:
1
ISSN:
2639-6696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal).

    Significance Statement

    A new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output.

     
    more » « less
  2. Abstract

    Gridded air temperature data are required in various fields such as ecological modeling, weather forecasting, and surface energy balance assessment. In this work, a piecewise multiple linear regression model is used to produce high‐resolution (250 m) daily maximum (Tmax), minimum (Tmin), and mean (Tmean) near‐surface air temperature maps for the State of Hawaiʻi for a 32‐year period (1990–2021). Multiple meteorological and geographical variables such as the elevation, daily rainfall, coastal distance index, leaf area index, albedo, topographic position index, and wind speed are independently tested to determine the most well‐suited predictor variables for optimal model performance. During the mapping process, input data scarcity is addressed first by gap‐filling critical stations at high elevation using a predetermined linear relationship with other strongly‐correlated stations, and second, by supplementing the training dataset with station data from neighboring islands. Despite the numerous covariates physically linked to temperature, the most parsimonious model selection uses elevation as its sole predictor, and the inclusion of the additional variables results in increased cross‐validation errors. The mean absolute error of resultant estimatedTmaxandTminmaps over the Hawaiian Islands from 1990 to 2021 is 1.7°C and 1.3°C, respectively. Corresponding bias values are 0.01°C and −0.13°C, respectively for the same variables. Overall, the results show the proposed methodology can robustly generate daily air temperature maps from point‐scale measurements over complex topography.

     
    more » « less
  3. Abstract

    Soil moisture spatial patterns with length scales of 1‐100 km influence hydrological, ecological, and agricultural processes, but the footprint or support volume of existing monitoring systems, for example, satellite‐based radiometers and sparse in situ monitoring networks, is often either too large or too small to effectively observe these mesoscale patterns. This measurement scale gap hinders our understanding of soil water processes and complicates calibration and validation of hydrologic models and soil moisture satellites. One possible solution is to utilize geostatistical techniques that have proven effective for mapping static patterns in soil properties. The objective of this study was to determine how effectively dynamic, mesoscale soil moisture patterns can be mapped by applying regression kriging to the data from a sparse, large‐scale in situ network. The fully automated system developed here uses several data sets: daily soil moisture measurements from the Oklahoma Mesonet, sand content estimates from the Natural Resource Conservation Service Soil Survey Geographic Database, and an antecedent precipitation index computed from National Weather Service multisensor precipitation estimates. A multiple linear regression model is fitted daily to the observed data, and the residuals of that model are used in a semivariogram estimation and kriging routine to produce daily statewide maps of soil moisture at 5‐, 25‐, and 60‐cm depths at 800‐m resolution. During over 3 years of operation, this mapping system has revealed complex, dynamic, and depth‐specific mesoscale patterns, reflecting the shifting influences of both soil texture and precipitation, with a mean absolute error of ≤0.0576 cm3/cm3across all three depths.

     
    more » « less
  4. Abstract

    In vivo fluorometers use chlorophyllafluorescence (Fchl) as a proxy to monitor phytoplankton biomass. However, the fluorescence yield ofFchlis affected by photoprotection processes triggered by increased irradiance (nonphotochemical quenching; NPQ), creating diurnal reductions inFchlthat may be mistaken for phytoplankton biomass reductions. Published correction methods are mostly designed for pelagic oceans and are ill suited for inland waters or for high‐frequency data collection. A machine learning‐based method was developed to correct vertical profiler data from an oligotrophic lake. NPQ was estimated as a percent reduction inFchlby comparing daytime values to mean, unquenched values from the previous night. A random forest regression was trained on sensor data collected coincident withFchl; including solar radiation, water temperature, depth, and dissolved oxygen saturation. The accuracy of the model was assessed using a grouped 10‐fold cross validation (mean absolute error [MAE]: 7.6%; root mean square error [RMSE]: 10.2%), which was then used to correctFchlprofiles. The model also predicted NPQ and corrected unseenFchlprofiles from a future period with excellent results (MAE: 9.0%; RMSE: 14.4%).Fchlprofiles were then correlated to laboratory results, allowing corrected profiles to be compared directly to collected samples. The correction reduced error (RMSE) due to NPQ from 0.67 μg L−1to 0.33 μg L−1when compared to uncorrectedFchldata. These results suggest that the use of machine learning models may be an effective way to correct for NPQ and may have universal applicability.

     
    more » « less
  5. Abstract

    Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72,p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79,p < 0.0001) except evergreen broadleaf forests (R2 = 0.16,p < 0.05) at the daily timescale. A higher slope was found for C4grasslands and croplands than for C3ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.

     
    more » « less